~aleteoryx/muditaos

ref: c1391090c67428aeaffcef5a7a71a6d2ed69ccc9 muditaos/module-bsp/board/rt1051/common/fsl_drivers/fsl_lpi2c.c -rw-r--r-- 59.2 KiB
c1391090 — Mateusz Piesta [BH-1389] Catch2 unit tests optimization 3 years ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
/*
 * The Clear BSD License
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * Copyright 2016-2017 NXP
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted (subject to the limitations in the disclaimer below) provided
 *  that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_lpi2c.h"
#include <stdlib.h>
#include <string.h>

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpi2c"
#endif

/*! @brief Common sets of flags used by the driver. */
enum _lpi2c_flag_constants
{
    /*! All flags which are cleared by the driver upon starting a transfer. */
    kMasterClearFlags = kLPI2C_MasterEndOfPacketFlag | kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag |
                        kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag | kLPI2C_MasterPinLowTimeoutFlag |
                        kLPI2C_MasterDataMatchFlag,

    /*! IRQ sources enabled by the non-blocking transactional API. */
    kMasterIrqFlags = kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterTxReadyFlag | kLPI2C_MasterRxReadyFlag |
                      kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag | kLPI2C_MasterPinLowTimeoutFlag |
                      kLPI2C_MasterFifoErrFlag,

    /*! Errors to check for. */
    kMasterErrorFlags = kLPI2C_MasterNackDetectFlag | kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag |
                        kLPI2C_MasterPinLowTimeoutFlag,

    /*! All flags which are cleared by the driver upon starting a transfer. */
    kSlaveClearFlags = kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveBitErrFlag |
                       kLPI2C_SlaveFifoErrFlag,

    /*! IRQ sources enabled by the non-blocking transactional API. */
    kSlaveIrqFlags = kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag |
                     kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag |
                     kLPI2C_SlaveTransmitAckFlag | kLPI2C_SlaveAddressValidFlag,

    /*! Errors to check for. */
    kSlaveErrorFlags = kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag,
};

/* ! @brief LPI2C master fifo commands. */
enum _lpi2c_master_fifo_cmd
{
    kTxDataCmd = LPI2C_MTDR_CMD(0x0U), /*!< Transmit DATA[7:0] */
    kRxDataCmd = LPI2C_MTDR_CMD(0X1U), /*!< Receive (DATA[7:0] + 1) bytes */
    kStopCmd   = LPI2C_MTDR_CMD(0x2U), /*!< Generate STOP condition */
    kStartCmd  = LPI2C_MTDR_CMD(0x4U), /*!< Generate(repeated) START and transmit address in DATA[[7:0] */
};

/*!
 * @brief Default watermark values.
 *
 * The default watermarks are set to zero.
 */
enum _lpi2c_default_watermarks
{
    kDefaultTxWatermark = 0,
    kDefaultRxWatermark = 0,
};

/*! @brief States for the state machine used by transactional APIs. */
enum _lpi2c_transfer_states
{
    kIdleState = 0,
    kSendCommandState,
    kIssueReadCommandState,
    kTransferDataState,
    kStopState,
    kWaitForCompletionState,
};

/*! @brief Typedef for master interrupt handler. */
typedef void (*lpi2c_master_isr_t)(LPI2C_Type *base, lpi2c_master_handle_t *handle);

/*! @brief Typedef for slave interrupt handler. */
typedef void (*lpi2c_slave_isr_t)(LPI2C_Type *base, lpi2c_slave_handle_t *handle);

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/* Not static so it can be used from fsl_lpi2c_edma.c. */
uint32_t LPI2C_GetInstance(LPI2C_Type *base);

static uint32_t LPI2C_GetCyclesForWidth(uint32_t sourceClock_Hz,
                                        uint32_t width_ns,
                                        uint32_t maxCycles,
                                        uint32_t prescaler);

static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base);

static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone);

static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle);

static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags);

static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance);

/*******************************************************************************
 * Variables
 ******************************************************************************/

/*! @brief Array to map LPI2C instance number to base pointer. */
static LPI2C_Type *const kLpi2cBases[] = LPI2C_BASE_PTRS;

/*! @brief Array to map LPI2C instance number to IRQ number. */
static IRQn_Type const kLpi2cIrqs[] = LPI2C_IRQS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Array to map LPI2C instance number to clock gate enum. */
static clock_ip_name_t const kLpi2cClocks[] = LPI2C_CLOCKS;

#if defined(LPI2C_PERIPH_CLOCKS)
/*! @brief Array to map LPI2C instance number to pheripheral clock gate enum. */
static const clock_ip_name_t kLpi2cPeriphClocks[] = LPI2C_PERIPH_CLOCKS;
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*! @brief Pointer to master IRQ handler for each instance. */
static lpi2c_master_isr_t s_lpi2cMasterIsr;

/*! @brief Pointers to master handles for each instance. */
static lpi2c_master_handle_t *s_lpi2cMasterHandle[ARRAY_SIZE(kLpi2cBases)];

/*! @brief Pointer to slave IRQ handler for each instance. */
static lpi2c_slave_isr_t s_lpi2cSlaveIsr;

/*! @brief Pointers to slave handles for each instance. */
static lpi2c_slave_handle_t *s_lpi2cSlaveHandle[ARRAY_SIZE(kLpi2cBases)];

/*******************************************************************************
 * Code
 ******************************************************************************/

/*!
 * @brief Returns an instance number given a base address.
 *
 * If an invalid base address is passed, debug builds will assert. Release builds will just return
 * instance number 0.
 *
 * @param base The LPI2C peripheral base address.
 * @return LPI2C instance number starting from 0.
 */
uint32_t LPI2C_GetInstance(LPI2C_Type *base)
{
    uint32_t instance;
    for (instance = 0; instance < ARRAY_SIZE(kLpi2cBases); ++instance) {
        if (kLpi2cBases[instance] == base) {
            return instance;
        }
    }

    assert(false);
    return 0;
}

/*!
 * @brief Computes a cycle count for a given time in nanoseconds.
 * @param sourceClock_Hz LPI2C functional clock frequency in Hertz.
 * @param width_ns Desired with in nanoseconds.
 * @param maxCycles Maximum cycle count, determined by the number of bits wide the cycle count field is.
 * @param prescaler LPI2C prescaler setting. Pass 1 if the prescaler should not be used, as for slave glitch widths.
 */
static uint32_t LPI2C_GetCyclesForWidth(uint32_t sourceClock_Hz,
                                        uint32_t width_ns,
                                        uint32_t maxCycles,
                                        uint32_t prescaler)
{
    assert(sourceClock_Hz > 0);
    assert(prescaler > 0);

    uint32_t busCycle_ns = 1000000 / (sourceClock_Hz / prescaler / 1000);
    uint32_t cycles      = 0;

    /* Search for the cycle count just below the desired glitch width. */
    while ((((cycles + 1) * busCycle_ns) < width_ns) && (cycles + 1 < maxCycles)) {
        ++cycles;
    }

    /* If we end up with zero cycles, then set the filter to a single cycle unless the */
    /* bus clock is greater than 10x the desired glitch width. */
    if ((cycles == 0) && (busCycle_ns <= (width_ns * 10))) {
        cycles = 1;
    }

    return cycles;
}

/*!
 * @brief Convert provided flags to status code, and clear any errors if present.
 * @param base The LPI2C peripheral base address.
 * @param status Current status flags value that will be checked.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_PinLowTimeout
 * @retval #kStatus_LPI2C_ArbitrationLost
 * @retval #kStatus_LPI2C_Nak
 * @retval #kStatus_LPI2C_FifoError
 */
status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status)
{
    status_t result = kStatus_Success;

    /* Check for error. These errors cause a stop to automatically be sent. We must */
    /* clear the errors before a new transfer can start. */
    status &= kMasterErrorFlags;
    if (status) {
        /* Select the correct error code. Ordered by severity, with bus issues first. */
        if (status & kLPI2C_MasterPinLowTimeoutFlag) {
            result = kStatus_LPI2C_PinLowTimeout;
        }
        else if (status & kLPI2C_MasterArbitrationLostFlag) {
            result = kStatus_LPI2C_ArbitrationLost;
        }
        else if (status & kLPI2C_MasterNackDetectFlag) {
            result = kStatus_LPI2C_Nak;
        }
        else if (status & kLPI2C_MasterFifoErrFlag) {
            result = kStatus_LPI2C_FifoError;
        }
        else {
            assert(false);
        }

        /* Clear the flags. */
        LPI2C_MasterClearStatusFlags(base, status);

        /* Reset fifos. These flags clear automatically. */
        base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
    }

    return result;
}

/*!
 * @brief Wait until there is room in the tx fifo.
 * @param base The LPI2C peripheral base address.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_PinLowTimeout
 * @retval #kStatus_LPI2C_ArbitrationLost
 * @retval #kStatus_LPI2C_Nak
 * @retval #kStatus_LPI2C_FifoError
 */
static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base)
{
    uint32_t status;
    size_t txCount;
    size_t txFifoSize = FSL_FEATURE_LPI2C_FIFO_SIZEn(base);

#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif
    do {
        status_t result;

        /* Get the number of words in the tx fifo and compute empty slots. */
        LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
        txCount = txFifoSize - txCount;

        /* Check for error flags. */
        status = LPI2C_MasterGetStatusFlags(base);
        result = LPI2C_MasterCheckAndClearError(base, status);
        if (result) {
            return result;
        }
#if LPI2C_WAIT_TIMEOUT
    } while ((!txCount) && (--waitTimes));

    if (waitTimes == 0) {
        return kStatus_LPI2C_Timeout;
    }
#else
    } while (!txCount);
#endif

    return kStatus_Success;
}

/*!
 * @brief Make sure the bus isn't already busy.
 *
 * A busy bus is allowed if we are the one driving it.
 *
 * @param base The LPI2C peripheral base address.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_Busy
 */
status_t LPI2C_CheckForBusyBus(LPI2C_Type *base)
{
    uint32_t status = LPI2C_MasterGetStatusFlags(base);
    if ((status & kLPI2C_MasterBusBusyFlag) && (!(status & kLPI2C_MasterBusyFlag))) {
        return kStatus_LPI2C_Busy;
    }

    return kStatus_Success;
}

void LPI2C_MasterGetDefaultConfig(lpi2c_master_config_t *masterConfig)
{
    masterConfig->enableMaster            = true;
    masterConfig->debugEnable             = false;
    masterConfig->enableDoze              = true;
    masterConfig->ignoreAck               = false;
    masterConfig->pinConfig               = kLPI2C_2PinOpenDrain;
    masterConfig->baudRate_Hz             = 100000U;
    masterConfig->busIdleTimeout_ns       = 0;
    masterConfig->pinLowTimeout_ns        = 0;
    masterConfig->sdaGlitchFilterWidth_ns = 0;
    masterConfig->sclGlitchFilterWidth_ns = 0;
    masterConfig->hostRequest.enable      = false;
    masterConfig->hostRequest.source      = kLPI2C_HostRequestExternalPin;
    masterConfig->hostRequest.polarity    = kLPI2C_HostRequestPinActiveHigh;
}

void LPI2C_MasterInit(LPI2C_Type *base, const lpi2c_master_config_t *masterConfig, uint32_t sourceClock_Hz)
{
    uint32_t prescaler;
    uint32_t cycles;
    uint32_t cfgr2;
    uint32_t value;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPI2C_GetInstance(base);

    /* Ungate the clock. */
    CLOCK_EnableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
    /* Ungate the functional clock in initialize function. */
    CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Reset peripheral before configuring it. */
    LPI2C_MasterReset(base);

    /* Doze bit: 0 is enable, 1 is disable */
    base->MCR = LPI2C_MCR_DBGEN(masterConfig->debugEnable) | LPI2C_MCR_DOZEN(!(masterConfig->enableDoze));

    /* host request */
    value = base->MCFGR0;
    value &= (~(LPI2C_MCFGR0_HREN_MASK | LPI2C_MCFGR0_HRPOL_MASK | LPI2C_MCFGR0_HRSEL_MASK));
    value |= LPI2C_MCFGR0_HREN(masterConfig->hostRequest.enable) |
             LPI2C_MCFGR0_HRPOL(masterConfig->hostRequest.polarity) |
             LPI2C_MCFGR0_HRSEL(masterConfig->hostRequest.source);
    base->MCFGR0 = value;

    /* pin config and ignore ack */
    value = base->MCFGR1;
    value &= ~(LPI2C_MCFGR1_PINCFG_MASK | LPI2C_MCFGR1_IGNACK_MASK);
    value |= LPI2C_MCFGR1_PINCFG(masterConfig->pinConfig);
    value |= LPI2C_MCFGR1_IGNACK(masterConfig->ignoreAck);
    base->MCFGR1 = value;

    LPI2C_MasterSetWatermarks(base, kDefaultTxWatermark, kDefaultRxWatermark);

    LPI2C_MasterSetBaudRate(base, sourceClock_Hz, masterConfig->baudRate_Hz);

    /* Configure glitch filters and bus idle and pin low timeouts. */
    prescaler = (base->MCFGR1 & LPI2C_MCFGR1_PRESCALE_MASK) >> LPI2C_MCFGR1_PRESCALE_SHIFT;
    cfgr2     = base->MCFGR2;
    if (masterConfig->busIdleTimeout_ns) {
        cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz,
                                         masterConfig->busIdleTimeout_ns,
                                         (LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT),
                                         prescaler);
        cfgr2 &= ~LPI2C_MCFGR2_BUSIDLE_MASK;
        cfgr2 |= LPI2C_MCFGR2_BUSIDLE(cycles);
    }
    if (masterConfig->sdaGlitchFilterWidth_ns) {
        cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz,
                                         masterConfig->sdaGlitchFilterWidth_ns,
                                         (LPI2C_MCFGR2_FILTSDA_MASK >> LPI2C_MCFGR2_FILTSDA_SHIFT),
                                         1);
        cfgr2 &= ~LPI2C_MCFGR2_FILTSDA_MASK;
        cfgr2 |= LPI2C_MCFGR2_FILTSDA(cycles);
    }
    if (masterConfig->sclGlitchFilterWidth_ns) {
        cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz,
                                         masterConfig->sclGlitchFilterWidth_ns,
                                         (LPI2C_MCFGR2_FILTSCL_MASK >> LPI2C_MCFGR2_FILTSCL_SHIFT),
                                         1);
        cfgr2 &= ~LPI2C_MCFGR2_FILTSCL_MASK;
        cfgr2 |= LPI2C_MCFGR2_FILTSCL(cycles);
    }
    base->MCFGR2 = cfgr2;
    if (masterConfig->pinLowTimeout_ns) {
        cycles       = LPI2C_GetCyclesForWidth(sourceClock_Hz,
                                         masterConfig->pinLowTimeout_ns / 256,
                                         (LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT),
                                         prescaler);
        base->MCFGR3 = (base->MCFGR3 & ~LPI2C_MCFGR3_PINLOW_MASK) | LPI2C_MCFGR3_PINLOW(cycles);
    }

    LPI2C_MasterEnable(base, masterConfig->enableMaster);
}

void LPI2C_MasterDeinit(LPI2C_Type *base)
{
    /* Restore to reset state. */
    LPI2C_MasterReset(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPI2C_GetInstance(base);

    /* Gate clock. */
    CLOCK_DisableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
    /* Gate the functional clock. */
    CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

void LPI2C_MasterConfigureDataMatch(LPI2C_Type *base, const lpi2c_data_match_config_t *config)
{
    /* Disable master mode. */
    bool wasEnabled = (base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT;
    LPI2C_MasterEnable(base, false);

    base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_MATCFG_MASK) | LPI2C_MCFGR1_MATCFG(config->matchMode);
    base->MCFGR0 = (base->MCFGR0 & ~LPI2C_MCFGR0_RDMO_MASK) | LPI2C_MCFGR0_RDMO(config->rxDataMatchOnly);
    base->MDMR   = LPI2C_MDMR_MATCH0(config->match0) | LPI2C_MDMR_MATCH1(config->match1);

    /* Restore master mode. */
    if (wasEnabled) {
        LPI2C_MasterEnable(base, true);
    }
}

void LPI2C_MasterSetBaudRate(LPI2C_Type *base, uint32_t sourceClock_Hz, uint32_t baudRate_Hz)
{
    uint32_t prescale  = 0;
    uint32_t bestPre   = 0;
    uint32_t bestClkHi = 0;
    uint32_t absError  = 0;
    uint32_t bestError = 0xffffffffu;
    uint32_t value;
    uint32_t clkHiCycle;
    uint32_t computedRate;
    int i;
    bool wasEnabled;

    /* Disable master mode. */
    wasEnabled = (base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT;
    LPI2C_MasterEnable(base, false);

    /* Baud rate = (sourceClock_Hz/2^prescale)/(CLKLO+1+CLKHI+1 + ROUNDDOWN((2+FILTSCL)/2^prescale) */
    /* Assume CLKLO = 2*CLKHI, SETHOLD = CLKHI, DATAVD = CLKHI/2. */
    for (prescale = 1; (prescale <= 128) && (bestError != 0); prescale = 2 * prescale) {
        for (clkHiCycle = 1; clkHiCycle < 32; clkHiCycle++) {
            if (clkHiCycle == 1) {
                computedRate = (sourceClock_Hz / prescale) / (1 + 3 + 2 + 2 / prescale);
            }
            else {
                computedRate = (sourceClock_Hz / prescale) / (3 * clkHiCycle + 2 + 2 / prescale);
            }

            absError = baudRate_Hz > computedRate ? baudRate_Hz - computedRate : computedRate - baudRate_Hz;

            if (absError < bestError) {
                bestPre   = prescale;
                bestClkHi = clkHiCycle;
                bestError = absError;

                /* If the error is 0, then we can stop searching because we won't find a better match. */
                if (absError == 0) {
                    break;
                }
            }
        }
    }

    /* Standard, fast, fast mode plus and ultra-fast transfers. */
    value = LPI2C_MCCR0_CLKHI(bestClkHi);

    if (bestClkHi < 2) {
        value |= LPI2C_MCCR0_CLKLO(3) | LPI2C_MCCR0_SETHOLD(2) | LPI2C_MCCR0_DATAVD(1);
    }
    else {
        value |= LPI2C_MCCR0_CLKLO(2 * bestClkHi) | LPI2C_MCCR0_SETHOLD(bestClkHi) | LPI2C_MCCR0_DATAVD(bestClkHi / 2);
    }

    base->MCCR0 = value;

    for (i = 0; i < 8; i++) {
        if (bestPre == (1U << i)) {
            bestPre = i;
            break;
        }
    }
    base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_PRESCALE_MASK) | LPI2C_MCFGR1_PRESCALE(bestPre);

    /* Restore master mode. */
    if (wasEnabled) {
        LPI2C_MasterEnable(base, true);
    }
}

status_t LPI2C_MasterStart(LPI2C_Type *base, uint8_t address, lpi2c_direction_t dir)
{
    /* Return an error if the bus is already in use not by us. */
    status_t result = LPI2C_CheckForBusyBus(base);
    if (result) {
        return result;
    }

    /* Clear all flags. */
    LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);

    /* Turn off auto-stop option. */
    base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;

    /* Wait until there is room in the fifo. */
    result = LPI2C_MasterWaitForTxReady(base);
    if (result) {
        return result;
    }

    /* Issue start command. */
    base->MTDR = kStartCmd | (((uint32_t)address << 1U) | (uint32_t)dir);

    return kStatus_Success;
}

status_t LPI2C_MasterStop(LPI2C_Type *base)
{
    /* Wait until there is room in the fifo. */
    status_t result = LPI2C_MasterWaitForTxReady(base);
    if (result) {
        return result;
    }

    /* Send the STOP signal */
    base->MTDR = kStopCmd;

/* Wait for the stop detected flag to set, indicating the transfer has completed on the bus. */
/* Also check for errors while waiting. */
#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif

#if LPI2C_WAIT_TIMEOUT
    while ((result == kStatus_Success) && (--waitTimes))
#else
    while (result == kStatus_Success)
#endif
    {
        uint32_t status = LPI2C_MasterGetStatusFlags(base);

        /* Check for error flags. */
        result = LPI2C_MasterCheckAndClearError(base, status);

        /* Check if the stop was sent successfully. */
        if (status & kLPI2C_MasterStopDetectFlag) {
            LPI2C_MasterClearStatusFlags(base, kLPI2C_MasterStopDetectFlag);
            break;
        }
    }

#if LPI2C_WAIT_TIMEOUT
    if (waitTimes == 0) {
        return kStatus_LPI2C_Timeout;
    }
#endif

    return result;
}

status_t LPI2C_MasterReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize)
{
    status_t result;
    uint8_t *buf;

    assert(rxBuff);

    /* Handle empty read. */
    if (!rxSize) {
        return kStatus_Success;
    }

    /* Wait until there is room in the command fifo. */
    result = LPI2C_MasterWaitForTxReady(base);
    if (result) {
        return result;
    }

    /* Issue command to receive data. */
    base->MTDR = kRxDataCmd | LPI2C_MTDR_DATA(rxSize - 1);

#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif

    /* Receive data */
    buf = (uint8_t *)rxBuff;
    while (rxSize--) {
        /* Read LPI2C receive fifo register. The register includes a flag to indicate whether */
        /* the FIFO is empty, so we can both get the data and check if we need to keep reading */
        /* using a single register read. */
        uint32_t value;
        do {
            /* Check for errors. */
            result = LPI2C_MasterCheckAndClearError(base, LPI2C_MasterGetStatusFlags(base));
            if (result) {
                return result;
            }

            value = base->MRDR;
#if LPI2C_WAIT_TIMEOUT
        } while ((value & LPI2C_MRDR_RXEMPTY_MASK) && (--waitTimes));
        if (waitTimes == 0) {
            return kStatus_LPI2C_Timeout;
        }
#else
        } while (value & LPI2C_MRDR_RXEMPTY_MASK);
#endif

        *buf++ = value & LPI2C_MRDR_DATA_MASK;
    }

    return kStatus_Success;
}

status_t LPI2C_MasterSend(LPI2C_Type *base, const void *txBuff, size_t txSize)
{
    const uint8_t *buf = (const uint8_t *)((const void *)txBuff);

    assert(txBuff);

    /* Send data buffer */
    while (txSize--) {
        /* Wait until there is room in the fifo. This also checks for errors. */
        status_t result = LPI2C_MasterWaitForTxReady(base);
        if (result) {
            return result;
        }

        /* Write byte into LPI2C master data register. */
        base->MTDR = *buf++;
    }

    return kStatus_Success;
}

status_t LPI2C_MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *transfer)
{
    status_t result = kStatus_Success;
    uint16_t commandBuffer[7];
    uint32_t cmdCount = 0;

    assert(transfer);
    assert(transfer->subaddressSize <= sizeof(transfer->subaddress));

    /* Return an error if the bus is already in use not by us. */
    result = LPI2C_CheckForBusyBus(base);
    if (result) {
        return result;
    }

    /* Clear all flags. */
    LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);

    /* Turn off auto-stop option. */
    base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;

    lpi2c_direction_t direction = transfer->subaddressSize ? kLPI2C_Write : transfer->direction;
    if (!(transfer->flags & kLPI2C_TransferNoStartFlag)) {
        commandBuffer[cmdCount++] =
            (uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)direction);
    }

    /* Subaddress, MSB first. */
    if (transfer->subaddressSize) {
        uint32_t subaddressRemaining = transfer->subaddressSize;
        while (subaddressRemaining--) {
            uint8_t subaddressByte    = (transfer->subaddress >> (8 * subaddressRemaining)) & 0xff;
            commandBuffer[cmdCount++] = subaddressByte;
        }
    }

    /* Reads need special handling. */
    if ((transfer->dataSize) && (transfer->direction == kLPI2C_Read)) {
        /* Need to send repeated start if switching directions to read. */
        if (direction == kLPI2C_Write) {
            commandBuffer[cmdCount++] =
                (uint16_t)kStartCmd |
                (uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
        }
    }

    /* Send command buffer */
    uint32_t index = 0;
    while (cmdCount--) {
        /* Wait until there is room in the fifo. This also checks for errors. */
        result = LPI2C_MasterWaitForTxReady(base);
        if (result) {
            return result;
        }

        /* Write byte into LPI2C master data register. */
        base->MTDR = commandBuffer[index];
        index++;
    }

    /* Transmit data. */
    if ((transfer->direction == kLPI2C_Write) && (transfer->dataSize > 0)) {
        /* Send Data. */
        result = LPI2C_MasterSend(base, transfer->data, transfer->dataSize);
    }

    /* Receive Data. */
    if ((transfer->direction == kLPI2C_Read) && (transfer->dataSize > 0)) {
        result = LPI2C_MasterReceive(base, transfer->data, transfer->dataSize);
    }

    if (result) {
        return result;
    }

    if ((transfer->flags & kLPI2C_TransferNoStopFlag) == 0) {
        result = LPI2C_MasterStop(base);
    }

    return result;
}

void LPI2C_MasterTransferCreateHandle(LPI2C_Type *base,
                                      lpi2c_master_handle_t *handle,
                                      lpi2c_master_transfer_callback_t callback,
                                      void *userData)
{
    uint32_t instance;

    assert(handle);

    /* Clear out the handle. */
    memset(handle, 0, sizeof(*handle));

    /* Look up instance number */
    instance = LPI2C_GetInstance(base);

    /* Save base and instance. */
    handle->completionCallback = callback;
    handle->userData           = userData;

    /* Save this handle for IRQ use. */
    s_lpi2cMasterHandle[instance] = handle;

    /* Set irq handler. */
    s_lpi2cMasterIsr = LPI2C_MasterTransferHandleIRQ;

    /* Clear internal IRQ enables and enable NVIC IRQ. */
    LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);

    /* Enable NVIC IRQ, this only enables the IRQ directly connected to the NVIC.
     In some cases the LPI2C IRQ is configured through INTMUX, user needs to enable
     INTMUX IRQ in application code. */
    EnableIRQ(kLpi2cIrqs[instance]);
}

/*!
 * @brief Execute states until FIFOs are exhausted.
 * @param handle Master nonblocking driver handle.
 * @param[out] isDone Set to true if the transfer has completed.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_PinLowTimeout
 * @retval #kStatus_LPI2C_ArbitrationLost
 * @retval #kStatus_LPI2C_Nak
 * @retval #kStatus_LPI2C_FifoError
 */
static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone)
{
    uint32_t status;
    status_t result = kStatus_Success;
    lpi2c_master_transfer_t *xfer;
    size_t txCount;
    size_t rxCount;
    size_t txFifoSize   = FSL_FEATURE_LPI2C_FIFO_SIZEn(base);
    bool state_complete = false;

    /* Set default isDone return value. */
    *isDone = false;

    /* Check for errors. */
    status = LPI2C_MasterGetStatusFlags(base);
    result = LPI2C_MasterCheckAndClearError(base, status);
    if (result) {
        return result;
    }

    /* Get pointer to private data. */
    xfer = &handle->transfer;

    /* Get fifo counts and compute room in tx fifo. */
    LPI2C_MasterGetFifoCounts(base, &rxCount, &txCount);
    txCount = txFifoSize - txCount;

    while (!state_complete) {
        /* Execute the state. */
        switch (handle->state) {
        case kSendCommandState: {
            /* Make sure there is room in the tx fifo for the next command. */
            if (!txCount--) {
                state_complete = true;
                break;
            }

            /* Issue command. buf is a uint8_t* pointing at the uint16 command array. */
            base->MTDR = *(uint16_t *)handle->buf;
            handle->buf += sizeof(uint16_t);

            /* Count down until all commands are sent. */
            if (--handle->remainingBytes == 0) {
                /* Choose next state and set up buffer pointer and count. */
                if (xfer->dataSize) {
                    /* Either a send or receive transfer is next. */
                    handle->state          = kTransferDataState;
                    handle->buf            = (uint8_t *)xfer->data;
                    handle->remainingBytes = xfer->dataSize;
                    if (xfer->direction == kLPI2C_Read) {
                        /* Disable TX interrupt */
                        LPI2C_MasterDisableInterrupts(base, kLPI2C_MasterTxReadyFlag);
                    }
                }
                else {
                    /* No transfer, so move to stop state. */
                    handle->state = kStopState;
                }
            }
            break;
        }

        case kIssueReadCommandState:
            /* Make sure there is room in the tx fifo for the read command. */
            if (!txCount--) {
                state_complete = true;
                break;
            }

            base->MTDR = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1);

            /* Move to transfer state. */
            handle->state = kTransferDataState;
            if (xfer->direction == kLPI2C_Read) {
                /* Disable TX interrupt */
                LPI2C_MasterDisableInterrupts(base, kLPI2C_MasterTxReadyFlag);
            }
            break;

        case kTransferDataState:
            if (xfer->direction == kLPI2C_Write) {
                /* Make sure there is room in the tx fifo. */
                if (!txCount--) {
                    state_complete = true;
                    break;
                }

                /* Put byte to send in fifo. */
                base->MTDR = *(handle->buf)++;
            }
            else {
                /* XXX handle receive sizes > 256, use kIssueReadCommandState */
                /* Make sure there is data in the rx fifo. */
                if (!rxCount--) {
                    state_complete = true;
                    break;
                }

                /* Read byte from fifo. */
                *(handle->buf)++ = base->MRDR & LPI2C_MRDR_DATA_MASK;
            }

            /* Move to stop when the transfer is done. */
            if (--handle->remainingBytes == 0) {
                handle->state = kStopState;
            }
            break;

        case kStopState:
            /* Only issue a stop transition if the caller requested it. */
            if ((xfer->flags & kLPI2C_TransferNoStopFlag) == 0) {
                /* Make sure there is room in the tx fifo for the stop command. */
                if (!txCount--) {
                    state_complete = true;
                    break;
                }

                base->MTDR = kStopCmd;
            }
            else {
                /* Caller doesn't want to send a stop, so we're done now. */
                *isDone        = true;
                state_complete = true;
                break;
            }
            handle->state = kWaitForCompletionState;
            break;

        case kWaitForCompletionState:
            /* We stay in this state until the stop state is detected. */
            if (status & kLPI2C_MasterStopDetectFlag) {
                *isDone = true;
            }
            state_complete = true;
            break;
        default:
            assert(false);
            break;
        }
    }
    return result;
}

/*!
 * @brief Prepares the transfer state machine and fills in the command buffer.
 * @param handle Master nonblocking driver handle.
 */
static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle)
{
    lpi2c_master_transfer_t *xfer = &handle->transfer;

    /* Handle no start option. */
    if (xfer->flags & kLPI2C_TransferNoStartFlag) {
        if (xfer->direction == kLPI2C_Read) {
            /* Need to issue read command first. */
            handle->state = kIssueReadCommandState;
        }
        else {
            /* Start immediately in the data transfer state. */
            handle->state = kTransferDataState;
        }

        handle->buf            = (uint8_t *)xfer->data;
        handle->remainingBytes = xfer->dataSize;
    }
    else {
        uint16_t *cmd     = (uint16_t *)&handle->commandBuffer;
        uint32_t cmdCount = 0;

        /* Initial direction depends on whether a subaddress was provided, and of course the actual */
        /* data transfer direction. */
        lpi2c_direction_t direction = xfer->subaddressSize ? kLPI2C_Write : xfer->direction;

        /* Start command. */
        cmd[cmdCount++] =
            (uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)direction);

        /* Subaddress, MSB first. */
        if (xfer->subaddressSize) {
            uint32_t subaddressRemaining = xfer->subaddressSize;
            while (subaddressRemaining--) {
                uint8_t subaddressByte = (xfer->subaddress >> (8 * subaddressRemaining)) & 0xff;
                cmd[cmdCount++]        = subaddressByte;
            }
        }

        /* Reads need special handling. */
        if ((xfer->dataSize) && (xfer->direction == kLPI2C_Read)) {
            /* Need to send repeated start if switching directions to read. */
            if (direction == kLPI2C_Write) {
                cmd[cmdCount++] = (uint16_t)kStartCmd |
                                  (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
            }

            /* Read command. */
            cmd[cmdCount++] = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1);
        }

        /* Set up state machine for transferring the commands. */
        handle->state          = kSendCommandState;
        handle->remainingBytes = cmdCount;
        handle->buf            = (uint8_t *)&handle->commandBuffer;
    }
}

status_t LPI2C_MasterTransferNonBlocking(LPI2C_Type *base,
                                         lpi2c_master_handle_t *handle,
                                         lpi2c_master_transfer_t *transfer)
{
    status_t result;

    assert(handle);
    assert(transfer);
    assert(transfer->subaddressSize <= sizeof(transfer->subaddress));

    /* Return busy if another transaction is in progress. */
    if (handle->state != kIdleState) {
        return kStatus_LPI2C_Busy;
    }

    /* Return an error if the bus is already in use not by us. */
    result = LPI2C_CheckForBusyBus(base);
    if (result) {
        return result;
    }

    /* Disable LPI2C IRQ sources while we configure stuff. */
    LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);

    /* Save transfer into handle. */
    handle->transfer = *transfer;

    /* Generate commands to send. */
    LPI2C_InitTransferStateMachine(handle);

    /* Clear all flags. */
    LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);

    /* Turn off auto-stop option. */
    base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;

    /* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
    LPI2C_MasterEnableInterrupts(base, kMasterIrqFlags);

    return result;
}

status_t LPI2C_MasterTransferGetCount(LPI2C_Type *base, lpi2c_master_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count) {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state == kIdleState) {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    uint8_t state;
    uint16_t remainingBytes;
    uint32_t dataSize;

    /* Cache some fields with IRQs disabled. This ensures all field values */
    /* are synchronized with each other during an ongoing transfer. */
    uint32_t irqs = LPI2C_MasterGetEnabledInterrupts(base);
    LPI2C_MasterDisableInterrupts(base, irqs);
    state          = handle->state;
    remainingBytes = handle->remainingBytes;
    dataSize       = handle->transfer.dataSize;
    LPI2C_MasterEnableInterrupts(base, irqs);

    /* Get transfer count based on current transfer state. */
    switch (state) {
    case kIdleState:
    case kSendCommandState:
    case kIssueReadCommandState: /* XXX return correct value for this state when >256 reads are supported */
        *count = 0;
        break;

    case kTransferDataState:
        *count = dataSize - remainingBytes;
        break;

    case kStopState:
    case kWaitForCompletionState:
    default:
        *count = dataSize;
        break;
    }

    return kStatus_Success;
}

void LPI2C_MasterTransferAbort(LPI2C_Type *base, lpi2c_master_handle_t *handle)
{
    if (handle->state != kIdleState) {
        /* Disable internal IRQ enables. */
        LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);

        /* Reset fifos. */
        base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;

        /* Send a stop command to finalize the transfer. */
        base->MTDR = kStopCmd;

        /* Reset handle. */
        handle->state = kIdleState;
    }
}

void LPI2C_MasterTransferHandleIRQ(LPI2C_Type *base, lpi2c_master_handle_t *handle)
{
    bool isDone;
    status_t result;

    /* Don't do anything if we don't have a valid handle. */
    if (!handle) {
        return;
    }

    if (handle->state == kIdleState) {
        return;
    }

    result = LPI2C_RunTransferStateMachine(base, handle, &isDone);

    if (isDone || (result != kStatus_Success)) {
        /* XXX need to handle data that may be in rx fifo below watermark level? */

        /* XXX handle error, terminate xfer */

        /* Disable internal IRQ enables. */
        LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);

        /* Set handle to idle state. */
        handle->state = kIdleState;

        /* Invoke callback. */
        if (handle->completionCallback) {
            handle->completionCallback(base, handle, result, handle->userData);
        }
    }
}

void LPI2C_SlaveGetDefaultConfig(lpi2c_slave_config_t *slaveConfig)
{
    slaveConfig->enableSlave               = true;
    slaveConfig->address0                  = 0U;
    slaveConfig->address1                  = 0U;
    slaveConfig->addressMatchMode          = kLPI2C_MatchAddress0;
    slaveConfig->filterDozeEnable          = true;
    slaveConfig->filterEnable              = true;
    slaveConfig->enableGeneralCall         = false;
    slaveConfig->sclStall.enableAck        = false;
    slaveConfig->sclStall.enableTx         = true;
    slaveConfig->sclStall.enableRx         = true;
    slaveConfig->sclStall.enableAddress    = false;
    slaveConfig->ignoreAck                 = false;
    slaveConfig->enableReceivedAddressRead = false;
    slaveConfig->sdaGlitchFilterWidth_ns   = 0; /* TODO determine default width values */
    slaveConfig->sclGlitchFilterWidth_ns   = 0;
    slaveConfig->dataValidDelay_ns         = 0;
    slaveConfig->clockHoldTime_ns          = 0;
}

void LPI2C_SlaveInit(LPI2C_Type *base, const lpi2c_slave_config_t *slaveConfig, uint32_t sourceClock_Hz)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPI2C_GetInstance(base);

    /* Ungate the clock. */
    CLOCK_EnableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
    /* Ungate the functional clock in initialize function. */
    CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Restore to reset conditions. */
    LPI2C_SlaveReset(base);

    /* Configure peripheral. */
    base->SAMR = LPI2C_SAMR_ADDR0(slaveConfig->address0) | LPI2C_SAMR_ADDR1(slaveConfig->address1);

    base->SCFGR1 =
        LPI2C_SCFGR1_ADDRCFG(slaveConfig->addressMatchMode) | LPI2C_SCFGR1_IGNACK(slaveConfig->ignoreAck) |
        LPI2C_SCFGR1_RXCFG(slaveConfig->enableReceivedAddressRead) | LPI2C_SCFGR1_GCEN(slaveConfig->enableGeneralCall) |
        LPI2C_SCFGR1_ACKSTALL(slaveConfig->sclStall.enableAck) | LPI2C_SCFGR1_TXDSTALL(slaveConfig->sclStall.enableTx) |
        LPI2C_SCFGR1_RXSTALL(slaveConfig->sclStall.enableRx) |
        LPI2C_SCFGR1_ADRSTALL(slaveConfig->sclStall.enableAddress);

    base->SCFGR2 =
        LPI2C_SCFGR2_FILTSDA(LPI2C_GetCyclesForWidth(sourceClock_Hz,
                                                     slaveConfig->sdaGlitchFilterWidth_ns,
                                                     (LPI2C_SCFGR2_FILTSDA_MASK >> LPI2C_SCFGR2_FILTSDA_SHIFT),
                                                     1)) |
        LPI2C_SCFGR2_FILTSCL(LPI2C_GetCyclesForWidth(sourceClock_Hz,
                                                     slaveConfig->sclGlitchFilterWidth_ns,
                                                     (LPI2C_SCFGR2_FILTSCL_MASK >> LPI2C_SCFGR2_FILTSCL_SHIFT),
                                                     1)) |
        LPI2C_SCFGR2_DATAVD(LPI2C_GetCyclesForWidth(sourceClock_Hz,
                                                    slaveConfig->dataValidDelay_ns,
                                                    (LPI2C_SCFGR2_DATAVD_MASK >> LPI2C_SCFGR2_DATAVD_SHIFT),
                                                    1)) |
        LPI2C_SCFGR2_CLKHOLD(LPI2C_GetCyclesForWidth(sourceClock_Hz,
                                                     slaveConfig->clockHoldTime_ns,
                                                     (LPI2C_SCFGR2_CLKHOLD_MASK >> LPI2C_SCFGR2_CLKHOLD_SHIFT),
                                                     1));

    /* Save SCR to last so we don't enable slave until it is configured */
    base->SCR = LPI2C_SCR_FILTDZ(slaveConfig->filterDozeEnable) | LPI2C_SCR_FILTEN(slaveConfig->filterEnable) |
                LPI2C_SCR_SEN(slaveConfig->enableSlave);
}

void LPI2C_SlaveDeinit(LPI2C_Type *base)
{
    LPI2C_SlaveReset(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPI2C_GetInstance(base);

    /* Gate the clock. */
    CLOCK_DisableClock(kLpi2cClocks[instance]);

#if defined(LPI2C_PERIPH_CLOCKS)
    /* Gate the functional clock. */
    CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

/*!
 * @brief Convert provided flags to status code, and clear any errors if present.
 * @param base The LPI2C peripheral base address.
 * @param status Current status flags value that will be checked.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_BitError
 * @retval #kStatus_LPI2C_FifoError
 */
static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags)
{
    status_t result = kStatus_Success;

    flags &= kSlaveErrorFlags;
    if (flags) {
        if (flags & kLPI2C_SlaveBitErrFlag) {
            result = kStatus_LPI2C_BitError;
        }
        else if (flags & kLPI2C_SlaveFifoErrFlag) {
            result = kStatus_LPI2C_FifoError;
        }
        else {
            assert(false);
        }

        /* Clear the errors. */
        LPI2C_SlaveClearStatusFlags(base, flags);
    }

    return result;
}

status_t LPI2C_SlaveSend(LPI2C_Type *base, const void *txBuff, size_t txSize, size_t *actualTxSize)
{
    const uint8_t *buf = (const uint8_t *)((const void *)txBuff);
    size_t remaining   = txSize;

    assert(txBuff);

#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif

    while (remaining) {
        uint32_t flags;
        status_t result;

        /* Wait until we can transmit. */
        do {
            /* Check for errors */
            flags  = LPI2C_SlaveGetStatusFlags(base);
            result = LPI2C_SlaveCheckAndClearError(base, flags);
            if (result) {
                if (actualTxSize) {
                    *actualTxSize = txSize - remaining;
                }
                return result;
            }
#if LPI2C_WAIT_TIMEOUT
        } while (
            (!(flags & (kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))) &&
            (--waitTimes));
        if (waitTimes == 0) {
            return kStatus_LPI2C_Timeout;
        }
#else
        } while (
            !(flags & (kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag)));
#endif

        /* Send a byte. */
        if (flags & kLPI2C_SlaveTxReadyFlag) {
            base->STDR = *buf++;
            --remaining;
        }

        /* Exit loop if we see a stop or restart */
        if (flags & (kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag)) {
            LPI2C_SlaveClearStatusFlags(base, kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag);
            break;
        }
    }

    if (actualTxSize) {
        *actualTxSize = txSize - remaining;
    }

    return kStatus_Success;
}

status_t LPI2C_SlaveReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize, size_t *actualRxSize)
{
    uint8_t *buf     = (uint8_t *)rxBuff;
    size_t remaining = rxSize;

    assert(rxBuff);

#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif

    while (remaining) {
        uint32_t flags;
        status_t result;

        /* Wait until we can receive. */
        do {
            /* Check for errors */
            flags  = LPI2C_SlaveGetStatusFlags(base);
            result = LPI2C_SlaveCheckAndClearError(base, flags);
            if (result) {
                if (actualRxSize) {
                    *actualRxSize = rxSize - remaining;
                }
                return result;
            }
#if LPI2C_WAIT_TIMEOUT
        } while (
            (!(flags & (kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))) &&
            (--waitTimes));
        if (waitTimes == 0) {
            return kStatus_LPI2C_Timeout;
        }
#else
        } while (
            !(flags & (kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag)));
#endif

        /* Receive a byte. */
        if (flags & kLPI2C_SlaveRxReadyFlag) {
            *buf++ = base->SRDR & LPI2C_SRDR_DATA_MASK;
            --remaining;
        }

        /* Exit loop if we see a stop or restart */
        if (flags & (kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag)) {
            LPI2C_SlaveClearStatusFlags(base, kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag);
            break;
        }
    }

    if (actualRxSize) {
        *actualRxSize = rxSize - remaining;
    }

    return kStatus_Success;
}

void LPI2C_SlaveTransferCreateHandle(LPI2C_Type *base,
                                     lpi2c_slave_handle_t *handle,
                                     lpi2c_slave_transfer_callback_t callback,
                                     void *userData)
{
    uint32_t instance;

    assert(handle);

    /* Clear out the handle. */
    memset(handle, 0, sizeof(*handle));

    /* Look up instance number */
    instance = LPI2C_GetInstance(base);

    /* Save base and instance. */
    handle->callback = callback;
    handle->userData = userData;

    /* Save this handle for IRQ use. */
    s_lpi2cSlaveHandle[instance] = handle;

    /* Set irq handler. */
    s_lpi2cSlaveIsr = LPI2C_SlaveTransferHandleIRQ;

    /* Clear internal IRQ enables and enable NVIC IRQ. */
    LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);
    EnableIRQ(kLpi2cIrqs[instance]);

    /* Nack by default. */
    base->STAR = LPI2C_STAR_TXNACK_MASK;
}

status_t LPI2C_SlaveTransferNonBlocking(LPI2C_Type *base, lpi2c_slave_handle_t *handle, uint32_t eventMask)
{
    uint32_t status;

    assert(handle);

    /* Return busy if another transaction is in progress. */
    if (handle->isBusy) {
        return kStatus_LPI2C_Busy;
    }

    /* Return an error if the bus is already in use not by us. */
    status = LPI2C_SlaveGetStatusFlags(base);
    if ((status & kLPI2C_SlaveBusBusyFlag) && (!(status & kLPI2C_SlaveBusyFlag))) {
        return kStatus_LPI2C_Busy;
    }

    /* Disable LPI2C IRQ sources while we configure stuff. */
    LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);

    /* Clear transfer in handle. */
    memset(&handle->transfer, 0, sizeof(handle->transfer));

    /* Record that we're busy. */
    handle->isBusy = true;

    /* Set up event mask. tx and rx are always enabled. */
    handle->eventMask = eventMask | kLPI2C_SlaveTransmitEvent | kLPI2C_SlaveReceiveEvent;

    /* Ack by default. */
    base->STAR = 0;

    /* Clear all flags. */
    LPI2C_SlaveClearStatusFlags(base, kSlaveClearFlags);

    /* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
    LPI2C_SlaveEnableInterrupts(base, kSlaveIrqFlags);

    return kStatus_Success;
}

status_t LPI2C_SlaveTransferGetCount(LPI2C_Type *base, lpi2c_slave_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count) {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (!handle->isBusy) {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    /* For an active transfer, just return the count from the handle. */
    *count = handle->transferredCount;

    return kStatus_Success;
}

void LPI2C_SlaveTransferAbort(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
{
    assert(handle);

    /* Return idle if no transaction is in progress. */
    if (handle->isBusy) {
        /* Disable LPI2C IRQ sources. */
        LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);

        /* Nack by default. */
        base->STAR = LPI2C_STAR_TXNACK_MASK;

        /* Reset transfer info. */
        memset(&handle->transfer, 0, sizeof(handle->transfer));

        /* We're no longer busy. */
        handle->isBusy = false;
    }
}

void LPI2C_SlaveTransferHandleIRQ(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
{
    uint32_t flags;
    lpi2c_slave_transfer_t *xfer;

    /* Check for a valid handle in case of a spurious interrupt. */
    if (!handle) {
        return;
    }

    xfer = &handle->transfer;

    /* Get status flags. */
    flags = LPI2C_SlaveGetStatusFlags(base);

    if (flags & (kLPI2C_SlaveBitErrFlag | kLPI2C_SlaveFifoErrFlag)) {
        xfer->event            = kLPI2C_SlaveCompletionEvent;
        xfer->completionStatus = LPI2C_SlaveCheckAndClearError(base, flags);

        if ((handle->eventMask & kLPI2C_SlaveCompletionEvent) && (handle->callback)) {
            handle->callback(base, xfer, handle->userData);
        }
        return;
    }
    if (flags & (kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag)) {
        xfer->event = (flags & kLPI2C_SlaveRepeatedStartDetectFlag) ? kLPI2C_SlaveRepeatedStartEvent
                                                                    : kLPI2C_SlaveCompletionEvent;
        xfer->receivedAddress  = 0;
        xfer->completionStatus = kStatus_Success;
        xfer->transferredCount = handle->transferredCount;

        if (xfer->event == kLPI2C_SlaveCompletionEvent) {
            handle->isBusy = false;
        }

        if (handle->wasTransmit) {
            /* Subtract one from the transmit count to offset the fact that LPI2C asserts the */
            /* tx flag before it sees the nack from the master-receiver, thus causing one more */
            /* count that the master actually receives. */
            --xfer->transferredCount;
            handle->wasTransmit = false;
        }

        /* Clear the flag. */
        LPI2C_SlaveClearStatusFlags(base, flags & (kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag));

        /* Revert to sending an Ack by default, in case we sent a Nack for receive. */
        base->STAR = 0;

        if ((handle->eventMask & xfer->event) && (handle->callback)) {
            handle->callback(base, xfer, handle->userData);
        }

        /* Clean up transfer info on completion, after the callback has been invoked. */
        memset(&handle->transfer, 0, sizeof(handle->transfer));
    }
    if (flags & kLPI2C_SlaveAddressValidFlag) {
        xfer->event           = kLPI2C_SlaveAddressMatchEvent;
        xfer->receivedAddress = base->SASR & LPI2C_SASR_RADDR_MASK;

        if ((handle->eventMask & kLPI2C_SlaveAddressMatchEvent) && (handle->callback)) {
            handle->callback(base, xfer, handle->userData);
        }
    }
    if (flags & kLPI2C_SlaveTransmitAckFlag) {
        xfer->event = kLPI2C_SlaveTransmitAckEvent;

        if ((handle->eventMask & kLPI2C_SlaveTransmitAckEvent) && (handle->callback)) {
            handle->callback(base, xfer, handle->userData);
        }
    }

    /* Handle transmit and receive. */
    if (flags & kLPI2C_SlaveTxReadyFlag) {
        handle->wasTransmit = true;

        /* If we're out of data, invoke callback to get more. */
        if ((!xfer->data) || (!xfer->dataSize)) {
            xfer->event = kLPI2C_SlaveTransmitEvent;
            if (handle->callback) {
                handle->callback(base, xfer, handle->userData);
            }

            /* Clear the transferred count now that we have a new buffer. */
            handle->transferredCount = 0;
        }

        /* Transmit a byte. */
        if ((xfer->data) && (xfer->dataSize)) {
            base->STDR = *xfer->data++;
            --xfer->dataSize;
            ++handle->transferredCount;
        }
    }
    if (flags & kLPI2C_SlaveRxReadyFlag) {
        /* If we're out of room in the buffer, invoke callback to get another. */
        if ((!xfer->data) || (!xfer->dataSize)) {
            xfer->event = kLPI2C_SlaveReceiveEvent;
            if (handle->callback) {
                handle->callback(base, xfer, handle->userData);
            }

            /* Clear the transferred count now that we have a new buffer. */
            handle->transferredCount = 0;
        }

        /* Receive a byte. */
        if ((xfer->data) && (xfer->dataSize)) {
            *xfer->data++ = base->SRDR;
            --xfer->dataSize;
            ++handle->transferredCount;
        }
        else {
            /* We don't have any room to receive more data, so send a nack. */
            base->STAR = LPI2C_STAR_TXNACK_MASK;
        }
    }
}

/*!
 * @brief Shared IRQ handler that can call both master and slave ISRs.
 *
 * The master and slave ISRs are called through function pointers in order to decouple
 * this code from the ISR functions. Without this, the linker would always pull in both
 * ISRs and every function they call, even if only the functional API was used.
 *
 * @param base The LPI2C peripheral base address.
 * @param instance The LPI2C peripheral instance number.
 */
static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance)
{
    /* Check for master IRQ. */
    if ((base->MCR & LPI2C_MCR_MEN_MASK) && s_lpi2cMasterIsr) {
        /* Master mode. */
        s_lpi2cMasterIsr(base, s_lpi2cMasterHandle[instance]);
    }

    /* Check for slave IRQ. */
    if ((base->SCR & LPI2C_SCR_SEN_MASK) && s_lpi2cSlaveIsr) {
        /* Slave mode. */
        s_lpi2cSlaveIsr(base, s_lpi2cSlaveHandle[instance]);
    }
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

#if defined(LPI2C0)
/* Implementation of LPI2C0 handler named in startup code. */
void LPI2C0_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C0, 0);
}
#endif

#if defined(LPI2C1)
/* Implementation of LPI2C1 handler named in startup code. */
void LPI2C1_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C1, 1);
}
#endif

#if defined(LPI2C2)
/* Implementation of LPI2C2 handler named in startup code. */
void LPI2C2_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C2, 2);
}
#endif

#if defined(LPI2C3)
/* Implementation of LPI2C3 handler named in startup code. */
void LPI2C3_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C3, 3);
}
#endif

#if defined(LPI2C4)
/* Implementation of LPI2C4 handler named in startup code. */
void LPI2C4_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C4, 4);
}
#endif

#if defined(CM4_0__LPI2C)
/* Implementation of CM4_0__LPI2C handler named in startup code. */
void M4_0_LPI2C_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(CM4_0__LPI2C, LPI2C_GetInstance(CM4_0__LPI2C));
}
#endif

#if defined(CM4__LPI2C)
/* Implementation of CM4__LPI2C handler named in startup code. */
void M4_LPI2C_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(CM4__LPI2C, LPI2C_GetInstance(CM4__LPI2C));
}
#endif

#if defined(CM4_1__LPI2C)
/* Implementation of CM4_1__LPI2C handler named in startup code. */
void M4_1_LPI2C_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(CM4_1__LPI2C, LPI2C_GetInstance(CM4_1__LPI2C));
}
#endif

#if defined(DMA__LPI2C0)
/* Implementation of DMA__LPI2C0 handler named in startup code. */
void DMA_I2C0_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C0, LPI2C_GetInstance(DMA__LPI2C0));
}
#endif

#if defined(DMA__LPI2C1)
/* Implementation of DMA__LPI2C1 handler named in startup code. */
void DMA_I2C1_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C1, LPI2C_GetInstance(DMA__LPI2C1));
}
#endif

#if defined(DMA__LPI2C2)
/* Implementation of DMA__LPI2C2 handler named in startup code. */
void DMA_I2C2_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C2, LPI2C_GetInstance(DMA__LPI2C2));
}
#endif

#if defined(DMA__LPI2C3)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void DMA_I2C3_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C3, LPI2C_GetInstance(DMA__LPI2C3));
}
#endif

#if defined(DMA__LPI2C4)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void DMA_I2C4_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C4, LPI2C_GetInstance(DMA__LPI2C4));
}
#endif

#if defined(ADMA__LPI2C0)
/* Implementation of DMA__LPI2C0 handler named in startup code. */
void ADMA_I2C0_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C0, LPI2C_GetInstance(ADMA__LPI2C0));
}
#endif

#if defined(ADMA__LPI2C1)
/* Implementation of DMA__LPI2C1 handler named in startup code. */
void ADMA_I2C1_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C1, LPI2C_GetInstance(ADMA__LPI2C1));
}
#endif

#if defined(ADMA__LPI2C2)
/* Implementation of DMA__LPI2C2 handler named in startup code. */
void ADMA_I2C2_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C2, LPI2C_GetInstance(ADMA__LPI2C2));
}
#endif

#if defined(ADMA__LPI2C3)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void ADMA_I2C3_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C3, LPI2C_GetInstance(ADMA__LPI2C3));
}
#endif

#if defined(ADMA__LPI2C4)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void ADMA_I2C4_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C4, LPI2C_GetInstance(ADMA__LPI2C4));
}
#endif