~aleteoryx/muditaos

ref: c1391090c67428aeaffcef5a7a71a6d2ed69ccc9 muditaos/module-bsp/board/rt1051/common/fsl_drivers/fsl_lpspi.c -rw-r--r-- 57.9 KiB
c1391090 — Mateusz Piesta [BH-1389] Catch2 unit tests optimization 3 years ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
/*
 * The Clear BSD License
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * Copyright 2016-2017 NXP
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted (subject to the limitations in the disclaimer below) provided
 *  that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_lpspi.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpspi"
#endif

/*!
 * @brief Default watermark values.
 *
 * The default watermarks are set to zero.
 */
enum _lpspi_default_watermarks
{
    kLpspiDefaultTxWatermark = 0,
    kLpspiDefaultRxWatermark = 0,
};

/*! @brief Typedef for master interrupt handler. */
typedef void (*lpspi_master_isr_t)(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*! @brief Typedef for slave interrupt handler. */
typedef void (*lpspi_slave_isr_t)(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/*!
 * @brief Configures the LPSPI peripheral chip select polarity.
 *
 * This function  takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
 * configures the Pcs signal to operate with the desired characteristic.
 *
 * @param base LPSPI peripheral address.
 * @param pcs The particular peripheral chip select (parameter value is of type lpspi_which_pcs_t) for which we wish to
 *            apply the active high or active low characteristic.
 * @param activeLowOrHigh The setting for either "active high, inactive low (0)"  or "active low, inactive high(1)" of
 *                        type lpspi_pcs_polarity_config_t.
 */
static void LPSPI_SetOnePcsPolarity(LPSPI_Type *base,
                                    lpspi_which_pcs_t pcs,
                                    lpspi_pcs_polarity_config_t activeLowOrHigh);

/*!
 * @brief Combine the write data for 1 byte to 4 bytes.
 * This is not a public API.
 */
static uint32_t LPSPI_CombineWriteData(uint8_t *txData, uint32_t bytesEachWrite, bool isByteSwap);

/*!
 * @brief Separate the read data for 1 byte to 4 bytes.
 * This is not a public API.
 */
static void LPSPI_SeparateReadData(uint8_t *rxData, uint32_t readData, uint32_t bytesEachRead, bool isByteSwap);

/*!
 * @brief Master fill up the TX FIFO with data.
 * This is not a public API.
 */
static void LPSPI_MasterTransferFillUpTxFifo(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*!
 * @brief Master finish up a transfer.
 * It would call back if there is callback function and set the state to idle.
 * This is not a public API.
 */
static void LPSPI_MasterTransferComplete(LPSPI_Type *base, lpspi_master_handle_t *handle);

/*!
 * @brief Slave fill up the TX FIFO with data.
 * This is not a public API.
 */
static void LPSPI_SlaveTransferFillUpTxFifo(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*!
 * @brief Slave finish up a transfer.
 * It would call back if there is callback function and set the state to idle.
 * This is not a public API.
 */
static void LPSPI_SlaveTransferComplete(LPSPI_Type *base, lpspi_slave_handle_t *handle);

/*!
 * @brief LPSPI common interrupt handler.
 *
 * @param handle pointer to s_lpspiHandle which stores the transfer state.
 */
static void LPSPI_CommonIRQHandler(LPSPI_Type *base, void *param);

/*******************************************************************************
 * Variables
 ******************************************************************************/

/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
static const uint8_t s_baudratePrescaler[] = {1, 2, 4, 8, 16, 32, 64, 128};

/*! @brief Pointers to lpspi bases for each instance. */
static LPSPI_Type *const s_lpspiBases[] = LPSPI_BASE_PTRS;

/*! @brief Pointers to lpspi IRQ number for each instance. */
static const IRQn_Type s_lpspiIRQ[] = LPSPI_IRQS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to lpspi clocks for each instance. */
static const clock_ip_name_t s_lpspiClocks[] = LPSPI_CLOCKS;

#if defined(LPSPI_PERIPH_CLOCKS)
static const clock_ip_name_t s_LpspiPeriphClocks[] = LPSPI_PERIPH_CLOCKS;
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*! @brief Pointers to lpspi handles for each instance. */
static void *s_lpspiHandle[ARRAY_SIZE(s_lpspiBases)] = {NULL};

/*! @brief Pointer to master IRQ handler for each instance. */
static lpspi_master_isr_t s_lpspiMasterIsr;
/*! @brief Pointer to slave IRQ handler for each instance. */
static lpspi_slave_isr_t s_lpspiSlaveIsr;
/* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
volatile uint8_t g_lpspiDummyData[ARRAY_SIZE(s_lpspiBases)] = {0};
/**********************************************************************************************************************
 * Code
 *********************************************************************************************************************/
uint32_t LPSPI_GetInstance(LPSPI_Type *base)
{
    uint8_t instance = 0;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_lpspiBases); instance++) {
        if (s_lpspiBases[instance] == base) {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_lpspiBases));

    return instance;
}

void LPSPI_SetDummyData(LPSPI_Type *base, uint8_t dummyData)
{
    uint32_t instance          = LPSPI_GetInstance(base);
    g_lpspiDummyData[instance] = dummyData;
}

void LPSPI_MasterInit(LPSPI_Type *base, const lpspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
    assert(masterConfig);

    uint32_t tcrPrescaleValue = 0;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    CLOCK_EnableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    CLOCK_EnableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Reset to known status */
    LPSPI_Reset(base);

    /* Set LPSPI to master */
    LPSPI_SetMasterSlaveMode(base, kLPSPI_Master);

    /* Set specific PCS to active high or low */
    LPSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);

    /* Set Configuration Register 1 related setting.*/
    base->CFGR1 = (base->CFGR1 & ~(LPSPI_CFGR1_OUTCFG_MASK | LPSPI_CFGR1_PINCFG_MASK | LPSPI_CFGR1_NOSTALL_MASK)) |
                  LPSPI_CFGR1_OUTCFG(masterConfig->dataOutConfig) | LPSPI_CFGR1_PINCFG(masterConfig->pinCfg) |
                  LPSPI_CFGR1_NOSTALL(0);

    /* Set baudrate and delay times*/
    LPSPI_MasterSetBaudRate(base, masterConfig->baudRate, srcClock_Hz, &tcrPrescaleValue);

    /* Set default watermarks */
    LPSPI_SetFifoWatermarks(base, kLpspiDefaultTxWatermark, kLpspiDefaultRxWatermark);

    /* Set Transmit Command Register*/
    base->TCR = LPSPI_TCR_CPOL(masterConfig->cpol) | LPSPI_TCR_CPHA(masterConfig->cpha) |
                LPSPI_TCR_LSBF(masterConfig->direction) | LPSPI_TCR_FRAMESZ(masterConfig->bitsPerFrame - 1) |
                LPSPI_TCR_PRESCALE(tcrPrescaleValue) | LPSPI_TCR_PCS(masterConfig->whichPcs);

    LPSPI_Enable(base, true);

    LPSPI_MasterSetDelayTimes(base, masterConfig->pcsToSckDelayInNanoSec, kLPSPI_PcsToSck, srcClock_Hz);
    LPSPI_MasterSetDelayTimes(base, masterConfig->lastSckToPcsDelayInNanoSec, kLPSPI_LastSckToPcs, srcClock_Hz);
    LPSPI_MasterSetDelayTimes(base, masterConfig->betweenTransferDelayInNanoSec, kLPSPI_BetweenTransfer, srcClock_Hz);

    LPSPI_SetDummyData(base, LPSPI_DUMMY_DATA);
}

void LPSPI_MasterGetDefaultConfig(lpspi_master_config_t *masterConfig)
{
    assert(masterConfig);

    masterConfig->baudRate     = 500000;
    masterConfig->bitsPerFrame = 8;
    masterConfig->cpol         = kLPSPI_ClockPolarityActiveHigh;
    masterConfig->cpha         = kLPSPI_ClockPhaseFirstEdge;
    masterConfig->direction    = kLPSPI_MsbFirst;

    masterConfig->pcsToSckDelayInNanoSec        = 1000000000 / masterConfig->baudRate * 2;
    masterConfig->lastSckToPcsDelayInNanoSec    = 1000000000 / masterConfig->baudRate * 2;
    masterConfig->betweenTransferDelayInNanoSec = 1000000000 / masterConfig->baudRate * 2;

    masterConfig->whichPcs           = kLPSPI_Pcs0;
    masterConfig->pcsActiveHighOrLow = kLPSPI_PcsActiveLow;

    masterConfig->pinCfg        = kLPSPI_SdiInSdoOut;
    masterConfig->dataOutConfig = kLpspiDataOutRetained;
}

void LPSPI_SlaveInit(LPSPI_Type *base, const lpspi_slave_config_t *slaveConfig)
{
    assert(slaveConfig);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    CLOCK_EnableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    CLOCK_EnableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Reset to known status */
    LPSPI_Reset(base);

    LPSPI_SetMasterSlaveMode(base, kLPSPI_Slave);

    LPSPI_SetOnePcsPolarity(base, slaveConfig->whichPcs, slaveConfig->pcsActiveHighOrLow);

    base->CFGR1 = (base->CFGR1 & ~(LPSPI_CFGR1_OUTCFG_MASK | LPSPI_CFGR1_PINCFG_MASK)) |
                  LPSPI_CFGR1_OUTCFG(slaveConfig->dataOutConfig) | LPSPI_CFGR1_PINCFG(slaveConfig->pinCfg);

    LPSPI_SetFifoWatermarks(base, kLpspiDefaultTxWatermark, kLpspiDefaultRxWatermark);

    base->TCR = LPSPI_TCR_CPOL(slaveConfig->cpol) | LPSPI_TCR_CPHA(slaveConfig->cpha) |
                LPSPI_TCR_LSBF(slaveConfig->direction) | LPSPI_TCR_FRAMESZ(slaveConfig->bitsPerFrame - 1);

    /* This operation will set the dummy data for edma transfer, no effect in interrupt way. */
    LPSPI_SetDummyData(base, LPSPI_DUMMY_DATA);

    LPSPI_Enable(base, true);
}

void LPSPI_SlaveGetDefaultConfig(lpspi_slave_config_t *slaveConfig)
{
    assert(slaveConfig);

    slaveConfig->bitsPerFrame = 8;                              /*!< Bits per frame, minimum 8, maximum 4096.*/
    slaveConfig->cpol         = kLPSPI_ClockPolarityActiveHigh; /*!< Clock polarity. */
    slaveConfig->cpha         = kLPSPI_ClockPhaseFirstEdge;     /*!< Clock phase. */
    slaveConfig->direction    = kLPSPI_MsbFirst;                /*!< MSB or LSB data shift direction. */

    slaveConfig->whichPcs           = kLPSPI_Pcs0;         /*!< Desired Peripheral Chip Select (pcs) */
    slaveConfig->pcsActiveHighOrLow = kLPSPI_PcsActiveLow; /*!< Desired PCS active high or low */

    slaveConfig->pinCfg        = kLPSPI_SdiInSdoOut;
    slaveConfig->dataOutConfig = kLpspiDataOutRetained;
}

void LPSPI_Reset(LPSPI_Type *base)
{
    /* Reset all internal logic and registers, except the Control Register. Remains set until cleared by software.*/
    base->CR |= LPSPI_CR_RST_MASK;

    /* Software reset doesn't reset the CR, so manual reset the FIFOs */
    base->CR |= LPSPI_CR_RRF_MASK | LPSPI_CR_RTF_MASK;

    /* Master logic is not reset and module is disabled.*/
    base->CR = 0x00U;
}

void LPSPI_Deinit(LPSPI_Type *base)
{
    /* Reset to default value */
    LPSPI_Reset(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPSPI_GetInstance(base);
    /* Enable LPSPI clock */
    CLOCK_DisableClock(s_lpspiClocks[instance]);

#if defined(LPSPI_PERIPH_CLOCKS)
    CLOCK_DisableClock(s_LpspiPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

static void LPSPI_SetOnePcsPolarity(LPSPI_Type *base,
                                    lpspi_which_pcs_t pcs,
                                    lpspi_pcs_polarity_config_t activeLowOrHigh)
{
    uint32_t cfgr1Value = 0;
    /* Clear the PCS polarity bit */
    cfgr1Value = base->CFGR1 & ~(1U << (LPSPI_CFGR1_PCSPOL_SHIFT + pcs));

    /* Configure the PCS polarity bit according to the activeLowOrHigh setting */
    base->CFGR1 = cfgr1Value | ((uint32_t)activeLowOrHigh << (LPSPI_CFGR1_PCSPOL_SHIFT + pcs));
}

uint32_t LPSPI_MasterSetBaudRate(LPSPI_Type *base,
                                 uint32_t baudRate_Bps,
                                 uint32_t srcClock_Hz,
                                 uint32_t *tcrPrescaleValue)
{
    assert(tcrPrescaleValue);

    /* For master mode configuration only, if slave mode detected, return 0.
     * Also, the LPSPI module needs to be disabled first, if enabled, return 0
     */
    if ((!LPSPI_IsMaster(base)) || (base->CR & LPSPI_CR_MEN_MASK)) {
        return 0;
    }

    uint32_t prescaler, bestPrescaler;
    uint32_t scaler, bestScaler;
    uint32_t realBaudrate, bestBaudrate;
    uint32_t diff, min_diff;
    uint32_t desiredBaudrate = baudRate_Bps;

    /* find combination of prescaler and scaler resulting in baudrate closest to the
     * requested value
     */
    min_diff = 0xFFFFFFFFU;

    /* Set to maximum divisor value bit settings so that if baud rate passed in is less
     * than the minimum possible baud rate, then the SPI will be configured to the lowest
     * possible baud rate
     */
    bestPrescaler = 7;
    bestScaler    = 255;

    bestBaudrate = 0; /* required to avoid compilation warning */

    /* In all for loops, if min_diff = 0, the exit for loop*/
    for (prescaler = 0; (prescaler < 8) && min_diff; prescaler++) {
        for (scaler = 0; (scaler < 256) && min_diff; scaler++) {
            realBaudrate = (srcClock_Hz / (s_baudratePrescaler[prescaler] * (scaler + 2U)));

            /* calculate the baud rate difference based on the conditional statement
             * that states that the calculated baud rate must not exceed the desired baud rate
             */
            if (desiredBaudrate >= realBaudrate) {
                diff = desiredBaudrate - realBaudrate;
                if (min_diff > diff) {
                    /* a better match found */
                    min_diff      = diff;
                    bestPrescaler = prescaler;
                    bestScaler    = scaler;
                    bestBaudrate  = realBaudrate;
                }
            }
        }
    }

    /* Write the best baud rate scalar to the CCR.
     * Note, no need to check for error since we've already checked to make sure the module is
     * disabled and in master mode. Also, there is a limit on the maximum divider so we will not
     * exceed this.
     */
    base->CCR = (base->CCR & ~LPSPI_CCR_SCKDIV_MASK) | LPSPI_CCR_SCKDIV(bestScaler);

    /* return the best prescaler value for user to use later */
    *tcrPrescaleValue = bestPrescaler;

    /* return the actual calculated baud rate */
    return bestBaudrate;
}

void LPSPI_MasterSetDelayScaler(LPSPI_Type *base, uint32_t scaler, lpspi_delay_type_t whichDelay)
{
    /*These settings are only relevant in master mode */
    switch (whichDelay) {
    case kLPSPI_PcsToSck:
        base->CCR = (base->CCR & (~LPSPI_CCR_PCSSCK_MASK)) | LPSPI_CCR_PCSSCK(scaler);

        break;
    case kLPSPI_LastSckToPcs:
        base->CCR = (base->CCR & (~LPSPI_CCR_SCKPCS_MASK)) | LPSPI_CCR_SCKPCS(scaler);

        break;
    case kLPSPI_BetweenTransfer:
        base->CCR = (base->CCR & (~LPSPI_CCR_DBT_MASK)) | LPSPI_CCR_DBT(scaler);

        break;
    default:
        assert(false);
        break;
    }
}

uint32_t LPSPI_MasterSetDelayTimes(LPSPI_Type *base,
                                   uint32_t delayTimeInNanoSec,
                                   lpspi_delay_type_t whichDelay,
                                   uint32_t srcClock_Hz)
{
    uint64_t realDelay, bestDelay;
    uint32_t scaler, bestScaler;
    uint32_t diff, min_diff;
    uint64_t initialDelayNanoSec;
    uint32_t clockDividedPrescaler;

    /* For delay between transfer, an additional scaler value is needed */
    uint32_t additionalScaler = 0;

    /*As the RM note, the LPSPI baud rate clock is itself divided by the PRESCALE setting, which can vary between
     * transfers.*/
    clockDividedPrescaler =
        srcClock_Hz / s_baudratePrescaler[(base->TCR & LPSPI_TCR_PRESCALE_MASK) >> LPSPI_TCR_PRESCALE_SHIFT];

    /* Find combination of prescaler and scaler resulting in the delay closest to the requested value.*/
    min_diff = 0xFFFFFFFFU;

    /* Initialize scaler to max value to generate the max delay */
    bestScaler = 0xFFU;

    /* Calculate the initial (min) delay and maximum possible delay based on the specific delay as
     * the delay divisors are slightly different based on which delay we are configuring.
     */
    if (whichDelay == kLPSPI_BetweenTransfer) {
        /* First calculate the initial, default delay, note min delay is 2 clock cycles. Due to large size of
         calculated values (uint64_t), we need to break up the calculation into several steps to ensure
         accurate calculated results
         */
        initialDelayNanoSec = 1000000000U;
        initialDelayNanoSec *= 2U;
        initialDelayNanoSec /= clockDividedPrescaler;

        /* Calculate the maximum delay */
        bestDelay = 1000000000U;
        bestDelay *= 257U; /* based on DBT+2, or 255 + 2 */
        bestDelay /= clockDividedPrescaler;

        additionalScaler = 1U;
    }
    else {
        /* First calculate the initial, default delay, min delay is 1 clock cycle. Due to large size of calculated
        values (uint64_t), we need to break up the calculation into several steps to ensure accurate calculated
        results.
        */
        initialDelayNanoSec = 1000000000U;
        initialDelayNanoSec /= clockDividedPrescaler;

        /* Calculate the maximum delay */
        bestDelay = 1000000000U;
        bestDelay *= 256U; /* based on SCKPCS+1 or PCSSCK+1, or 255 + 1 */
        bestDelay /= clockDividedPrescaler;

        additionalScaler = 0;
    }

    /* If the initial, default delay is already greater than the desired delay, then
     * set the delay to their initial value (0) and return the delay. In other words,
     * there is no way to decrease the delay value further.
     */
    if (initialDelayNanoSec >= delayTimeInNanoSec) {
        LPSPI_MasterSetDelayScaler(base, 0, whichDelay);
        return initialDelayNanoSec;
    }

    /* If min_diff = 0, the exit for loop */
    for (scaler = 0; (scaler < 256U) && min_diff; scaler++) {
        /* Calculate the real delay value as we cycle through the scaler values.
        Due to large size of calculated values (uint64_t), we need to break up the
        calculation into several steps to ensure accurate calculated results
        */
        realDelay = 1000000000U;
        realDelay *= (scaler + 1 + additionalScaler);
        realDelay /= clockDividedPrescaler;

        /* calculate the delay difference based on the conditional statement
         * that states that the calculated delay must not be less then the desired delay
         */
        if (realDelay >= delayTimeInNanoSec) {
            diff = realDelay - delayTimeInNanoSec;
            if (min_diff > diff) {
                /* a better match found */
                min_diff   = diff;
                bestScaler = scaler;
                bestDelay  = realDelay;
            }
        }
    }

    /* write the best scaler value for the delay */
    LPSPI_MasterSetDelayScaler(base, bestScaler, whichDelay);

    /* return the actual calculated delay value (in ns) */
    return bestDelay;
}

/*Transactional APIs -- Master*/

void LPSPI_MasterTransferCreateHandle(LPSPI_Type *base,
                                      lpspi_master_handle_t *handle,
                                      lpspi_master_transfer_callback_t callback,
                                      void *userData)
{
    assert(handle);

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    s_lpspiHandle[LPSPI_GetInstance(base)] = handle;

    /* Set irq handler. */
    s_lpspiMasterIsr = LPSPI_MasterTransferHandleIRQ;

    handle->callback = callback;
    handle->userData = userData;
}

bool LPSPI_CheckTransferArgument(lpspi_transfer_t *transfer, uint32_t bitsPerFrame, uint32_t bytesPerFrame)
{
    assert(transfer);

    /* If the transfer count is zero, then return immediately.*/
    if (transfer->dataSize == 0) {
        return false;
    }

    /* If both send buffer and receive buffer is null */
    if ((!(transfer->txData)) && (!(transfer->rxData))) {
        return false;
    }

    /*The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame is less than or equal to 4 .
     *For bytesPerFrame greater than 4 situation:
     *the transfer data size should be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4 ,
     *otherwise , the transfer data size can be integer multiples of bytesPerFrame.
     */
    if (bytesPerFrame <= 4) {
        if ((transfer->dataSize % bytesPerFrame) != 0) {
            return false;
        }
    }
    else {
        if ((bytesPerFrame % 4U) != 0) {
            if (transfer->dataSize != bytesPerFrame) {
                return false;
            }
        }
        else {
            if ((transfer->dataSize % bytesPerFrame) != 0) {
                return false;
            }
        }
    }

    return true;
}

status_t LPSPI_MasterTransferBlocking(LPSPI_Type *base, lpspi_transfer_t *transfer)
{
    assert(transfer);

    uint32_t bitsPerFrame  = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1;
    uint32_t bytesPerFrame = (bitsPerFrame + 7) / 8;
    uint32_t temp          = 0U;
    uint8_t dummyData      = g_lpspiDummyData[LPSPI_GetInstance(base)];

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame)) {
        return kStatus_InvalidArgument;
    }

    /* Check that LPSPI is not busy.*/
    if (LPSPI_GetStatusFlags(base) & kLPSPI_ModuleBusyFlag) {
        return kStatus_LPSPI_Busy;
    }

    uint8_t *txData               = transfer->txData;
    uint8_t *rxData               = transfer->rxData;
    uint32_t txRemainingByteCount = transfer->dataSize;
    uint32_t rxRemainingByteCount = transfer->dataSize;

    uint8_t bytesEachWrite;
    uint8_t bytesEachRead;

    uint32_t readData = 0;
    uint32_t wordToSend =
        ((uint32_t)dummyData) | ((uint32_t)dummyData << 8) | ((uint32_t)dummyData << 16) | ((uint32_t)dummyData << 24);

    /*The TX and RX FIFO sizes are always the same*/
    uint32_t fifoSize = LPSPI_GetRxFifoSize(base);

    uint32_t whichPcs = (transfer->configFlags & LPSPI_MASTER_PCS_MASK) >> LPSPI_MASTER_PCS_SHIFT;

    bool isPcsContinuous = (bool)(transfer->configFlags & kLPSPI_MasterPcsContinuous);
    bool isRxMask        = false;
    bool isByteSwap      = (bool)(transfer->configFlags & kLPSPI_MasterByteSwap);

    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, kLPSPI_AllStatusFlag);

    if (!rxData) {
        isRxMask = true;
    }

    LPSPI_Enable(base, false);
    base->CFGR1 &= (~LPSPI_CFGR1_NOSTALL_MASK);
    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut))) {
        if (!txData) {
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((txData) && (rxData)) {
            return kStatus_InvalidArgument;
        }
    }
    LPSPI_Enable(base, true);

    base->TCR =
        (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
        LPSPI_TCR_CONT(isPcsContinuous) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_PCS(whichPcs);

    if (bytesPerFrame <= 4) {
        bytesEachWrite = bytesPerFrame;
        bytesEachRead  = bytesPerFrame;
    }
    else {
        bytesEachWrite = 4;
        bytesEachRead  = 4;
    }

    /*Write the TX data until txRemainingByteCount is equal to 0 */
    while (txRemainingByteCount > 0) {
        if (txRemainingByteCount < bytesEachWrite) {
            bytesEachWrite = txRemainingByteCount;
        }

        /*Wait until TX FIFO is not full*/
        while (LPSPI_GetTxFifoCount(base) == fifoSize) {}

        if (txData) {
            wordToSend = LPSPI_CombineWriteData(txData, bytesEachWrite, isByteSwap);
            txData += bytesEachWrite;
        }

        LPSPI_WriteData(base, wordToSend);
        txRemainingByteCount -= bytesEachWrite;

        /*Check whether there is RX data in RX FIFO . Read out the RX data so that the RX FIFO would not overrun.*/
        if (rxData) {
            while (LPSPI_GetRxFifoCount(base)) {
                readData = LPSPI_ReadData(base);
                if (rxRemainingByteCount < bytesEachRead) {
                    bytesEachRead = rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(rxData, readData, bytesEachRead, isByteSwap);
                rxData += bytesEachRead;

                rxRemainingByteCount -= bytesEachRead;
            }
        }
    }

    /* After write all the data in TX FIFO , should write the TCR_CONTC to 0 to de-assert the PCS. Note that TCR
     * register also use the TX FIFO.
     */
    while ((LPSPI_GetTxFifoCount(base) == fifoSize)) {}
    base->TCR = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));

    /*Read out the RX data in FIFO*/
    if (rxData) {
        while (rxRemainingByteCount > 0) {
            while (LPSPI_GetRxFifoCount(base)) {
                readData = LPSPI_ReadData(base);

                if (rxRemainingByteCount < bytesEachRead) {
                    bytesEachRead = rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(rxData, readData, bytesEachRead, isByteSwap);
                rxData += bytesEachRead;

                rxRemainingByteCount -= bytesEachRead;
            }
        }
    }
    else {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets */
        while (!(LPSPI_GetStatusFlags(base) & kLPSPI_TransferCompleteFlag)) {}
    }

    return kStatus_Success;
}

status_t LPSPI_MasterTransferNonBlocking(LPSPI_Type *base, lpspi_master_handle_t *handle, lpspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    uint32_t bitsPerFrame  = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1;
    uint32_t bytesPerFrame = (bitsPerFrame + 7) / 8;
    uint32_t temp          = 0U;
    uint8_t dummyData      = g_lpspiDummyData[LPSPI_GetInstance(base)];

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame)) {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == kLPSPI_Busy) {
        return kStatus_LPSPI_Busy;
    }

    handle->state = kLPSPI_Busy;

    bool isRxMask = false;

    uint8_t txWatermark;

    uint32_t whichPcs = (transfer->configFlags & LPSPI_MASTER_PCS_MASK) >> LPSPI_MASTER_PCS_SHIFT;

    handle->txData               = transfer->txData;
    handle->rxData               = transfer->rxData;
    handle->txRemainingByteCount = transfer->dataSize;
    handle->rxRemainingByteCount = transfer->dataSize;
    handle->totalByteCount       = transfer->dataSize;

    handle->writeTcrInIsr = false;

    handle->writeRegRemainingTimes = (transfer->dataSize / bytesPerFrame) * ((bytesPerFrame + 3) / 4);
    handle->readRegRemainingTimes  = handle->writeRegRemainingTimes;

    handle->txBuffIfNull =
        ((uint32_t)dummyData) | ((uint32_t)dummyData << 8) | ((uint32_t)dummyData << 16) | ((uint32_t)dummyData << 24);

    /*The TX and RX FIFO sizes are always the same*/
    handle->fifoSize = LPSPI_GetRxFifoSize(base);

    handle->isPcsContinuous = (bool)(transfer->configFlags & kLPSPI_MasterPcsContinuous);
    handle->isByteSwap      = (bool)(transfer->configFlags & kLPSPI_MasterByteSwap);

    /*Set the RX and TX watermarks to reduce the ISR times.*/
    if (handle->fifoSize > 1) {
        txWatermark         = 1;
        handle->rxWatermark = handle->fifoSize - 2;
    }
    else {
        txWatermark         = 0;
        handle->rxWatermark = 0;
    }

    LPSPI_SetFifoWatermarks(base, txWatermark, handle->rxWatermark);

    LPSPI_Enable(base, false);
    /*Transfers will stall when transmit FIFO is empty or receive FIFO is full. */
    base->CFGR1 &= (~LPSPI_CFGR1_NOSTALL_MASK);
    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut))) {
        if (!handle->txData) {
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((handle->txData) && (handle->rxData)) {
            return kStatus_InvalidArgument;
        }
    }
    LPSPI_Enable(base, true);

    /*Flush FIFO , clear status , disable all the inerrupts.*/
    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, kLPSPI_AllStatusFlag);
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    /* If there is not rxData , can mask the receive data (receive data is not stored in receive FIFO).
     * For master transfer , we'd better not masked the transmit data in TCR since the transfer flow is hard to
     * controlled by software.*/
    if (handle->rxData == NULL) {
        isRxMask                     = true;
        handle->rxRemainingByteCount = 0;
    }

    base->TCR =
        (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
        LPSPI_TCR_CONT(handle->isPcsContinuous) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) |
        LPSPI_TCR_PCS(whichPcs);

    /*Calculate the bytes for write/read the TX/RX register each time*/
    if (bytesPerFrame <= 4) {
        handle->bytesEachWrite = bytesPerFrame;
        handle->bytesEachRead  = bytesPerFrame;
    }
    else {
        handle->bytesEachWrite = 4;
        handle->bytesEachRead  = 4;
    }

    /* Enable the NVIC for LPSPI peripheral. Note that below code is useless if the LPSPI interrupt is in INTMUX ,
     * and you should also enable the INTMUX interupt in your application.
     */
    EnableIRQ(s_lpspiIRQ[LPSPI_GetInstance(base)]);

    /*TCR is also shared the FIFO , so wait for TCR written.*/
    while (LPSPI_GetTxFifoCount(base) != 0) {}
    /*Fill up the TX data in FIFO */
    LPSPI_MasterTransferFillUpTxFifo(base, handle);

    /* Since SPI is a synchronous interface, we only need to enable the RX interrupt if there is RX data.
     * The IRQ handler will get the status of RX and TX interrupt flags.
     */
    if (handle->rxData) {
        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if ((handle->readRegRemainingTimes) <= handle->rxWatermark) {
            base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) | LPSPI_FCR_RXWATER(handle->readRegRemainingTimes - 1);
        }

        LPSPI_EnableInterrupts(base, kLPSPI_RxInterruptEnable);
    }
    else {
        LPSPI_EnableInterrupts(base, kLPSPI_TxInterruptEnable);
    }

    return kStatus_Success;
}

static void LPSPI_MasterTransferFillUpTxFifo(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    uint32_t wordToSend = 0;

    /* Make sure the difference in remaining TX and RX byte counts does not exceed FIFO depth
     * and that the number of TX FIFO entries does not exceed the FIFO depth.
     * But no need to make the protection if there is no rxData.
     */
    while ((LPSPI_GetTxFifoCount(base) < (handle->fifoSize)) &&
           (((handle->readRegRemainingTimes - handle->writeRegRemainingTimes) < handle->fifoSize) ||
            (handle->rxData == NULL))) {
        if (handle->txRemainingByteCount < handle->bytesEachWrite) {
            handle->bytesEachWrite = handle->txRemainingByteCount;
        }

        if (handle->txData) {
            wordToSend = LPSPI_CombineWriteData(handle->txData, handle->bytesEachWrite, handle->isByteSwap);
            handle->txData += handle->bytesEachWrite;
        }
        else {
            wordToSend = handle->txBuffIfNull;
        }

        /*Write the word to TX register*/
        LPSPI_WriteData(base, wordToSend);

        /*Decrease the write TX register times.*/
        --handle->writeRegRemainingTimes;

        /*Decrease the remaining TX byte count.*/
        handle->txRemainingByteCount -= handle->bytesEachWrite;

        if (handle->txRemainingByteCount == 0) {
            /* If PCS is continuous, update TCR to de-assert PCS */
            if (handle->isPcsContinuous) {
                /* Only write to the TCR if the FIFO has room */
                if ((LPSPI_GetTxFifoCount(base) < (handle->fifoSize))) {
                    base->TCR             = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
                    handle->writeTcrInIsr = false;
                }
                /* Else, set a global flag to tell the ISR to do write to the TCR */
                else {
                    handle->writeTcrInIsr = true;
                }
            }
            break;
        }
    }
}

static void LPSPI_MasterTransferComplete(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    handle->state = kLPSPI_Idle;

    if (handle->callback) {
        handle->callback(base, handle, kStatus_Success, handle->userData);
    }
}

status_t LPSPI_MasterTransferGetCount(LPSPI_Type *base, lpspi_master_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count) {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != kLPSPI_Busy) {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    size_t remainingByte;

    if (handle->rxData) {
        remainingByte = handle->rxRemainingByteCount;
    }
    else {
        remainingByte = handle->txRemainingByteCount;
    }

    *count = handle->totalByteCount - remainingByte;

    return kStatus_Success;
}

void LPSPI_MasterTransferAbort(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    LPSPI_Reset(base);

    handle->state                = kLPSPI_Idle;
    handle->txRemainingByteCount = 0;
    handle->rxRemainingByteCount = 0;
}

void LPSPI_MasterTransferHandleIRQ(LPSPI_Type *base, lpspi_master_handle_t *handle)
{
    assert(handle);

    uint32_t readData;

    if (handle->rxData != NULL) {
        if (handle->rxRemainingByteCount) {
            /* First, disable the interrupts to avoid potentially triggering another interrupt
             * while reading out the RX FIFO as more data may be coming into the RX FIFO. We'll
             * re-enable the interrupts based on the LPSPI state after reading out the FIFO.
             */
            LPSPI_DisableInterrupts(base, kLPSPI_RxInterruptEnable);

            while ((LPSPI_GetRxFifoCount(base)) && (handle->rxRemainingByteCount)) {
                /*Read out the data*/
                readData = LPSPI_ReadData(base);

                /*Decrease the read RX register times.*/
                --handle->readRegRemainingTimes;

                if (handle->rxRemainingByteCount < handle->bytesEachRead) {
                    handle->bytesEachRead = handle->rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(handle->rxData, readData, handle->bytesEachRead, handle->isByteSwap);
                handle->rxData += handle->bytesEachRead;

                /*Decrease the remaining RX byte count.*/
                handle->rxRemainingByteCount -= handle->bytesEachRead;
            }

            /* Re-enable the interrupts only if rxCount indicates there is more data to receive,
             * else we may get a spurious interrupt.
             * */
            if (handle->rxRemainingByteCount) {
                /* Set the TDF and RDF interrupt enables simultaneously to avoid race conditions */
                LPSPI_EnableInterrupts(base, kLPSPI_RxInterruptEnable);
            }
        }

        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if ((handle->readRegRemainingTimes) <= (handle->rxWatermark)) {
            base->FCR =
                (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) |
                LPSPI_FCR_RXWATER((handle->readRegRemainingTimes > 1) ? (handle->readRegRemainingTimes - 1U) : (0U));
        }
    }

    if (handle->txRemainingByteCount) {
        LPSPI_MasterTransferFillUpTxFifo(base, handle);
    }
    else {
        if ((LPSPI_GetTxFifoCount(base) < (handle->fifoSize))) {
            if ((handle->isPcsContinuous) && (handle->writeTcrInIsr)) {
                base->TCR             = (base->TCR & ~(LPSPI_TCR_CONTC_MASK));
                handle->writeTcrInIsr = false;
            }
        }
    }

    if ((handle->txRemainingByteCount == 0) && (handle->rxRemainingByteCount == 0) && (!handle->writeTcrInIsr)) {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets */
        if (handle->rxData == NULL) {
            if (LPSPI_GetStatusFlags(base) & kLPSPI_TransferCompleteFlag) {
                /* Complete the transfer and disable the interrupts */
                LPSPI_MasterTransferComplete(base, handle);
            }
            else {
                LPSPI_EnableInterrupts(base, kLPSPI_TransferCompleteInterruptEnable);
                LPSPI_DisableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable);
            }
        }
        else {
            /* Complete the transfer and disable the interrupts */
            LPSPI_MasterTransferComplete(base, handle);
        }
    }
}

/*Transactional APIs -- Slave*/
void LPSPI_SlaveTransferCreateHandle(LPSPI_Type *base,
                                     lpspi_slave_handle_t *handle,
                                     lpspi_slave_transfer_callback_t callback,
                                     void *userData)
{
    assert(handle);

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    s_lpspiHandle[LPSPI_GetInstance(base)] = handle;

    /* Set irq handler. */
    s_lpspiSlaveIsr = LPSPI_SlaveTransferHandleIRQ;

    handle->callback = callback;
    handle->userData = userData;
}

status_t LPSPI_SlaveTransferNonBlocking(LPSPI_Type *base, lpspi_slave_handle_t *handle, lpspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    uint32_t bitsPerFrame  = ((base->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT) + 1;
    uint32_t bytesPerFrame = (bitsPerFrame + 7) / 8;
    uint32_t temp          = 0U;

    if (!LPSPI_CheckTransferArgument(transfer, bitsPerFrame, bytesPerFrame)) {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == kLPSPI_Busy) {
        return kStatus_LPSPI_Busy;
    }
    handle->state = kLPSPI_Busy;

    bool isRxMask = false;
    bool isTxMask = false;

    uint32_t whichPcs = (transfer->configFlags & LPSPI_SLAVE_PCS_MASK) >> LPSPI_SLAVE_PCS_SHIFT;

    handle->txData               = transfer->txData;
    handle->rxData               = transfer->rxData;
    handle->txRemainingByteCount = transfer->dataSize;
    handle->rxRemainingByteCount = transfer->dataSize;
    handle->totalByteCount       = transfer->dataSize;

    handle->writeRegRemainingTimes = (transfer->dataSize / bytesPerFrame) * ((bytesPerFrame + 3) / 4);
    handle->readRegRemainingTimes  = handle->writeRegRemainingTimes;

    /*The TX and RX FIFO sizes are always the same*/
    handle->fifoSize = LPSPI_GetRxFifoSize(base);

    handle->isByteSwap = (bool)(transfer->configFlags & kLPSPI_SlaveByteSwap);

    /*Set the RX and TX watermarks to reduce the ISR times.*/
    uint8_t txWatermark;
    if (handle->fifoSize > 1) {
        txWatermark         = 1;
        handle->rxWatermark = handle->fifoSize - 2;
    }
    else {
        txWatermark         = 0;
        handle->rxWatermark = 0;
    }
    LPSPI_SetFifoWatermarks(base, txWatermark, handle->rxWatermark);

    /* Check if using 3-wire mode and the txData is NULL, set the output pin to tristated. */
    temp = base->CFGR1;
    temp &= LPSPI_CFGR1_PINCFG_MASK;
    if ((temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdiInSdiOut)) || (temp == LPSPI_CFGR1_PINCFG(kLPSPI_SdoInSdoOut))) {
        if (!handle->txData) {
            LPSPI_Enable(base, false);
            base->CFGR1 |= LPSPI_CFGR1_OUTCFG_MASK;
            LPSPI_Enable(base, true);
        }
        /* The 3-wire mode can't send and receive data at the same time. */
        if ((handle->txData) && (handle->rxData)) {
            return kStatus_InvalidArgument;
        }
    }

    /*Flush FIFO , clear status , disable all the inerrupts.*/
    LPSPI_FlushFifo(base, true, true);
    LPSPI_ClearStatusFlags(base, kLPSPI_AllStatusFlag);
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    /*If there is not rxData , can mask the receive data (receive data is not stored in receive FIFO).*/
    if (handle->rxData == NULL) {
        isRxMask                     = true;
        handle->rxRemainingByteCount = 0;
    }

    /*If there is not txData , can mask the transmit data (no data is loaded from transmit FIFO and output pin
     * is tristated).
     */
    if (handle->txData == NULL) {
        isTxMask                     = true;
        handle->txRemainingByteCount = 0;
    }

    base->TCR = (base->TCR & ~(LPSPI_TCR_CONT_MASK | LPSPI_TCR_CONTC_MASK | LPSPI_TCR_RXMSK_MASK |
                               LPSPI_TCR_TXMSK_MASK | LPSPI_TCR_PCS_MASK)) |
                LPSPI_TCR_CONT(0) | LPSPI_TCR_CONTC(0) | LPSPI_TCR_RXMSK(isRxMask) | LPSPI_TCR_TXMSK(isTxMask) |
                LPSPI_TCR_PCS(whichPcs);

    /*Calculate the bytes for write/read the TX/RX register each time*/
    if (bytesPerFrame <= 4) {
        handle->bytesEachWrite = bytesPerFrame;
        handle->bytesEachRead  = bytesPerFrame;
    }
    else {
        handle->bytesEachWrite = 4;
        handle->bytesEachRead  = 4;
    }

    /* Enable the NVIC for LPSPI peripheral. Note that below code is useless if the LPSPI interrupt is in INTMUX ,
     * and you should also enable the INTMUX interupt in your application.
     */
    EnableIRQ(s_lpspiIRQ[LPSPI_GetInstance(base)]);

    /*TCR is also shared the FIFO , so wait for TCR written.*/
    while (LPSPI_GetTxFifoCount(base) != 0) {}

    /*Fill up the TX data in FIFO */
    if (handle->txData) {
        LPSPI_SlaveTransferFillUpTxFifo(base, handle);
    }

    /* Since SPI is a synchronous interface, we only need to enable the RX interrupt if there is RX data.
     * The IRQ handler will get the status of RX and TX interrupt flags.
     */
    if (handle->rxData) {
        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if ((handle->readRegRemainingTimes) <= handle->rxWatermark) {
            base->FCR = (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) | LPSPI_FCR_RXWATER(handle->readRegRemainingTimes - 1);
        }

        LPSPI_EnableInterrupts(base, kLPSPI_RxInterruptEnable);
    }
    else {
        LPSPI_EnableInterrupts(base, kLPSPI_TxInterruptEnable);
    }

    if (handle->rxData) {
        /* RX FIFO overflow request enable */
        LPSPI_EnableInterrupts(base, kLPSPI_ReceiveErrorInterruptEnable);
    }
    if (handle->txData) {
        /* TX FIFO underflow request enable */
        LPSPI_EnableInterrupts(base, kLPSPI_TransmitErrorInterruptEnable);
    }

    return kStatus_Success;
}

static void LPSPI_SlaveTransferFillUpTxFifo(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    uint32_t wordToSend = 0;

    while (LPSPI_GetTxFifoCount(base) < (handle->fifoSize)) {
        if (handle->txRemainingByteCount < handle->bytesEachWrite) {
            handle->bytesEachWrite = handle->txRemainingByteCount;
        }

        wordToSend = LPSPI_CombineWriteData(handle->txData, handle->bytesEachWrite, handle->isByteSwap);
        handle->txData += handle->bytesEachWrite;

        /*Decrease the remaining TX byte count.*/
        handle->txRemainingByteCount -= handle->bytesEachWrite;

        /*Write the word to TX register*/
        LPSPI_WriteData(base, wordToSend);

        if (handle->txRemainingByteCount == 0) {
            break;
        }
    }
}

static void LPSPI_SlaveTransferComplete(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    status_t status = 0;

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, kLPSPI_AllInterruptEnable);

    if (handle->state == kLPSPI_Error) {
        status = kStatus_LPSPI_Error;
    }
    else {
        status = kStatus_Success;
    }

    handle->state = kLPSPI_Idle;

    if (handle->callback) {
        handle->callback(base, handle, status, handle->userData);
    }
}

status_t LPSPI_SlaveTransferGetCount(LPSPI_Type *base, lpspi_slave_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count) {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != kLPSPI_Busy) {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    size_t remainingByte;

    if (handle->rxData) {
        remainingByte = handle->rxRemainingByteCount;
    }
    else {
        remainingByte = handle->txRemainingByteCount;
    }

    *count = handle->totalByteCount - remainingByte;

    return kStatus_Success;
}

void LPSPI_SlaveTransferAbort(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    LPSPI_DisableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable);

    LPSPI_Reset(base);

    handle->state                = kLPSPI_Idle;
    handle->txRemainingByteCount = 0;
    handle->rxRemainingByteCount = 0;
}

void LPSPI_SlaveTransferHandleIRQ(LPSPI_Type *base, lpspi_slave_handle_t *handle)
{
    assert(handle);

    uint32_t readData;   /* variable to store word read from RX FIFO */
    uint32_t wordToSend; /* variable to store word to write to TX FIFO */

    if (handle->rxData != NULL) {
        if (handle->rxRemainingByteCount > 0) {
            while (LPSPI_GetRxFifoCount(base)) {
                /*Read out the data*/
                readData = LPSPI_ReadData(base);

                /*Decrease the read RX register times.*/
                --handle->readRegRemainingTimes;

                if (handle->rxRemainingByteCount < handle->bytesEachRead) {
                    handle->bytesEachRead = handle->rxRemainingByteCount;
                }

                LPSPI_SeparateReadData(handle->rxData, readData, handle->bytesEachRead, handle->isByteSwap);
                handle->rxData += handle->bytesEachRead;

                /*Decrease the remaining RX byte count.*/
                handle->rxRemainingByteCount -= handle->bytesEachRead;

                if ((handle->txRemainingByteCount > 0) && (handle->txData != NULL)) {
                    if (handle->txRemainingByteCount < handle->bytesEachWrite) {
                        handle->bytesEachWrite = handle->txRemainingByteCount;
                    }

                    wordToSend = LPSPI_CombineWriteData(handle->txData, handle->bytesEachWrite, handle->isByteSwap);
                    handle->txData += handle->bytesEachWrite;

                    /*Decrease the remaining TX byte count.*/
                    handle->txRemainingByteCount -= handle->bytesEachWrite;

                    /*Write the word to TX register*/
                    LPSPI_WriteData(base, wordToSend);
                }

                if (handle->rxRemainingByteCount == 0) {
                    break;
                }
            }
        }

        /*Set rxWatermark to (readRegRemainingTimes-1) if readRegRemainingTimes less than rxWatermark. Otherwise there
         *is not RX interrupt for the last datas because the RX count is not greater than rxWatermark.
         */
        if ((handle->readRegRemainingTimes) <= (handle->rxWatermark)) {
            base->FCR =
                (base->FCR & (~LPSPI_FCR_RXWATER_MASK)) |
                LPSPI_FCR_RXWATER((handle->readRegRemainingTimes > 1) ? (handle->readRegRemainingTimes - 1U) : (0U));
        }
    }
    else if ((handle->txRemainingByteCount) && (handle->txData != NULL)) {
        LPSPI_SlaveTransferFillUpTxFifo(base, handle);
    }
    else {
        __NOP();
    }

    if ((handle->txRemainingByteCount == 0) && (handle->rxRemainingByteCount == 0)) {
        /* If no RX buffer, then transfer is not complete until transfer complete flag sets and the TX FIFO empty*/
        if (handle->rxData == NULL) {
            if ((LPSPI_GetStatusFlags(base) & kLPSPI_FrameCompleteFlag) && (LPSPI_GetTxFifoCount(base) == 0)) {
                /* Complete the transfer and disable the interrupts */
                LPSPI_SlaveTransferComplete(base, handle);
            }
            else {
                LPSPI_ClearStatusFlags(base, kLPSPI_FrameCompleteFlag);
                LPSPI_EnableInterrupts(base, kLPSPI_FrameCompleteInterruptEnable);
                LPSPI_DisableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable);
            }
        }
        else {
            /* Complete the transfer and disable the interrupts */
            LPSPI_SlaveTransferComplete(base, handle);
        }
    }

    /* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
    if ((LPSPI_GetStatusFlags(base) & kLPSPI_TransmitErrorFlag) && (base->IER & LPSPI_IER_TEIE_MASK)) {
        LPSPI_ClearStatusFlags(base, kLPSPI_TransmitErrorFlag);
        /* Change state to error and clear flag */
        if (handle->txData) {
            handle->state = kLPSPI_Error;
        }
        handle->errorCount++;
    }
    /* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
    if ((LPSPI_GetStatusFlags(base) & kLPSPI_ReceiveErrorFlag) && (base->IER & LPSPI_IER_REIE_MASK)) {
        LPSPI_ClearStatusFlags(base, kLPSPI_ReceiveErrorFlag);
        /* Change state to error and clear flag */
        if (handle->txData) {
            handle->state = kLPSPI_Error;
        }
        handle->errorCount++;
    }
}

static uint32_t LPSPI_CombineWriteData(uint8_t *txData, uint32_t bytesEachWrite, bool isByteSwap)
{
    assert(txData);

    uint32_t wordToSend = 0;

    switch (bytesEachWrite) {
    case 1:
        wordToSend = *txData;
        ++txData;
        break;

    case 2:
        if (!isByteSwap) {
            wordToSend = *txData;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 8U;
            ++txData;
        }
        else {
            wordToSend = (unsigned)(*txData) << 8U;
            ++txData;
            wordToSend |= *txData;
            ++txData;
        }

        break;

    case 3:
        if (!isByteSwap) {
            wordToSend = *txData;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 8U;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 16U;
            ++txData;
        }
        else {
            wordToSend = (unsigned)(*txData) << 16U;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 8U;
            ++txData;
            wordToSend |= *txData;
            ++txData;
        }
        break;

    case 4:
        if (!isByteSwap) {
            wordToSend = *txData;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 8U;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 16U;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 24U;
            ++txData;
        }
        else {
            wordToSend = (unsigned)(*txData) << 24U;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 16U;
            ++txData;
            wordToSend |= (unsigned)(*txData) << 8U;
            ++txData;
            wordToSend |= *txData;
            ++txData;
        }
        break;

    default:
        assert(false);
        break;
    }
    return wordToSend;
}

static void LPSPI_SeparateReadData(uint8_t *rxData, uint32_t readData, uint32_t bytesEachRead, bool isByteSwap)
{
    assert(rxData);

    switch (bytesEachRead) {
    case 1:
        *rxData = readData;
        ++rxData;
        break;

    case 2:
        if (!isByteSwap) {
            *rxData = readData;
            ++rxData;
            *rxData = readData >> 8;
            ++rxData;
        }
        else {
            *rxData = readData >> 8;
            ++rxData;
            *rxData = readData;
            ++rxData;
        }
        break;

    case 3:
        if (!isByteSwap) {
            *rxData = readData;
            ++rxData;
            *rxData = readData >> 8;
            ++rxData;
            *rxData = readData >> 16;
            ++rxData;
        }
        else {
            *rxData = readData >> 16;
            ++rxData;
            *rxData = readData >> 8;
            ++rxData;
            *rxData = readData;
            ++rxData;
        }
        break;

    case 4:
        if (!isByteSwap) {
            *rxData = readData;
            ++rxData;
            *rxData = readData >> 8;
            ++rxData;
            *rxData = readData >> 16;
            ++rxData;
            *rxData = readData >> 24;
            ++rxData;
        }
        else {
            *rxData = readData >> 24;
            ++rxData;
            *rxData = readData >> 16;
            ++rxData;
            *rxData = readData >> 8;
            ++rxData;
            *rxData = readData;
            ++rxData;
        }
        break;

    default:
        assert(false);
        break;
    }
}

static void LPSPI_CommonIRQHandler(LPSPI_Type *base, void *param)
{
    if (LPSPI_IsMaster(base)) {
        s_lpspiMasterIsr(base, (lpspi_master_handle_t *)param);
    }
    else {
        s_lpspiSlaveIsr(base, (lpspi_slave_handle_t *)param);
    }
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

#if defined(LPSPI0)
void LPSPI0_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[0]);
    LPSPI_CommonIRQHandler(LPSPI0, s_lpspiHandle[0]);
}
#endif

#if defined(LPSPI1)
void LPSPI1_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[1]);
    LPSPI_CommonIRQHandler(LPSPI1, s_lpspiHandle[1]);
}
#endif

#if defined(LPSPI2)
void LPSPI2_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[2]);
    LPSPI_CommonIRQHandler(LPSPI2, s_lpspiHandle[2]);
}
#endif

#if defined(LPSPI3)
void LPSPI3_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[3]);
    LPSPI_CommonIRQHandler(LPSPI3, s_lpspiHandle[3]);
}
#endif

#if defined(LPSPI4)
void LPSPI4_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[4]);
    LPSPI_CommonIRQHandler(LPSPI4, s_lpspiHandle[4]);
}
#endif

#if defined(LPSPI5)
void LPSPI5_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[5]);
    LPSPI_CommonIRQHandler(LPSPI5, s_lpspiHandle[5]);
}
#endif

#if defined(DMA__LPSPI0)
void DMA_SPI0_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI0)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI0, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI0)]);
}
#endif

#if defined(DMA__LPSPI1)
void DMA_SPI1_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI1)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI1, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI1)]);
}
#endif
#if defined(DMA__LPSPI2)
void DMA_SPI2_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI2)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI2, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI2)]);
}
#endif

#if defined(DMA__LPSPI3)
void DMA_SPI3_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI3)]);
    LPSPI_CommonIRQHandler(DMA__LPSPI3, s_lpspiHandle[LPSPI_GetInstance(DMA__LPSPI3)]);
}
#endif

#if defined(ADMA__LPSPI0)
void ADMA_SPI0_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI0)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI0, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI0)]);
}
#endif

#if defined(ADMA__LPSPI1)
void ADMA_SPI1_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI1)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI1, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI1)]);
}
#endif
#if defined(ADMA__LPSPI2)
void ADMA_SPI2_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI2)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI2, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI2)]);
}
#endif

#if defined(ADMA__LPSPI3)
void ADMA_SPI3_INT_DriverIRQHandler(void)
{
    assert(s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI3)]);
    LPSPI_CommonIRQHandler(ADMA__LPSPI3, s_lpspiHandle[LPSPI_GetInstance(ADMA__LPSPI3)]);
}
#endif