~aleteoryx/muditaos

ref: c1391090c67428aeaffcef5a7a71a6d2ed69ccc9 muditaos/module-bsp/board/rt1051/common/fsl_drivers/fsl_semc.c -rw-r--r-- 35.3 KiB
c1391090 — Mateusz Piesta [BH-1389] Catch2 unit tests optimization 3 years ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/*
 * The Clear BSD License
 * Copyright 2017 NXP
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted (subject to the limitations in the disclaimer below) provided
 *  that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_semc.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.semc"
#endif

/*! @brief Define macros for SEMC driver. */
#define SEMC_IPCOMMANDDATASIZEBYTEMAX         (4U)
#define SEMC_IPCOMMANDMAGICKEY                (0xA55A)
#define SEMC_IOCR_PINMUXBITWIDTH              (0x3U)
#define SEMC_IOCR_NAND_CE                     (4U)
#define SEMC_IOCR_NOR_CE                      (5U)
#define SEMC_IOCR_NOR_CE_A8                   (2U)
#define SEMC_IOCR_PSRAM_CE                    (6U)
#define SEMC_IOCR_PSRAM_CE_A8                 (3U)
#define SEMC_IOCR_DBI_CSX                     (7U)
#define SEMC_IOCR_DBI_CSX_A8                  (4U)
#define SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE (24U)
#define SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX  (28U)
#define SEMC_BMCR0_TYPICAL_WQOS               (5U)
#define SEMC_BMCR0_TYPICAL_WAGE               (8U)
#define SEMC_BMCR0_TYPICAL_WSH                (0x40U)
#define SEMC_BMCR0_TYPICAL_WRWS               (0x10U)
#define SEMC_BMCR1_TYPICAL_WQOS               (5U)
#define SEMC_BMCR1_TYPICAL_WAGE               (8U)
#define SEMC_BMCR1_TYPICAL_WPH                (0x60U)
#define SEMC_BMCR1_TYPICAL_WBR                (0x40U)
#define SEMC_BMCR1_TYPICAL_WRWS               (0x24U)
#define SEMC_STARTADDRESS                     (0x80000000U)
#define SEMC_ENDADDRESS                       (0xDFFFFFFFU)
#define SEMC_BR_MEMSIZE_MIN                   (4)
#define SEMC_BR_MEMSIZE_OFFSET                (2)
#define SEMC_BR_MEMSIZE_MAX                   (4 * 1024 * 1024)
#define SEMC_SDRAM_MODESETCAL_OFFSET          (4)
#define SEMC_BR_REG_NUM                       (9)
#define SEMC_BYTE_NUMBIT                      (8)
/*******************************************************************************
 * Prototypes
 ******************************************************************************/
/*!
 * @brief Get instance number for SEMC module.
 *
 * @param base SEMC peripheral base address
 */
static uint32_t SEMC_GetInstance(SEMC_Type *base);

/*!
 * @brief Covert the input memory size to internal register set value.
 *
 * @param base SEMC peripheral base address
 * @param size_kbytes SEMC memory size in unit of kbytes.
 * @param sizeConverted SEMC converted memory size to 0 ~ 0x1F.
 * @return Execution status.
 */
static status_t SEMC_CovertMemorySize(SEMC_Type *base, uint32_t size_kbytes, uint8_t *sizeConverted);

/*!
 * @brief Covert the external timing nanosecond to internal clock cycle.
 *
 * @param time_ns   SEMC external time interval in unit of nanosecond.
 * @param clkSrc_Hz SEMC clock source frequency.
 * @return The changed internal clock cycle.
 */
static uint8_t SEMC_ConvertTiming(uint32_t time_ns, uint32_t clkSrc_Hz);

/*!
 * @brief Configure IP command.
 *
 * @param base SEMC peripheral base address.
 * @param size_bytes SEMC IP command data size.
 * @return Execution status.
 */
static status_t SEMC_ConfigureIPCommand(SEMC_Type *base, uint8_t size_bytes);

/*!
 * @brief Check if the IP command has finished.
 *
 * @param base SEMC peripheral base address.
 * @return Execution status.
 */
static status_t SEMC_IsIPCommandDone(SEMC_Type *base);

/*******************************************************************************
 * Variables
 ******************************************************************************/

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to SEMC clocks for each instance. */
static const clock_ip_name_t s_semcClock[FSL_FEATURE_SOC_SEMC_COUNT]    = SEMC_CLOCKS;
static const clock_ip_name_t s_semcExtClock[FSL_FEATURE_SOC_SEMC_COUNT] = SEMC_EXSC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*! @brief Pointers to SEMC bases for each instance. */
static SEMC_Type *const s_semcBases[] = SEMC_BASE_PTRS;
/*******************************************************************************
 * Code
 ******************************************************************************/
static uint32_t SEMC_GetInstance(SEMC_Type *base)
{
    uint32_t instance;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_semcBases); instance++) {
        if (s_semcBases[instance] == base) {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_semcBases));

    return instance;
}

static status_t SEMC_CovertMemorySize(SEMC_Type *base, uint32_t size_kbytes, uint8_t *sizeConverted)
{
    assert(sizeConverted);
    uint32_t memsize;

    if ((size_kbytes < SEMC_BR_MEMSIZE_MIN) || (size_kbytes > SEMC_BR_MEMSIZE_MAX)) {
        return kStatus_SEMC_InvalidMemorySize;
    }

    *sizeConverted = 0;
    memsize        = size_kbytes / 8;
    while (memsize) {
        memsize >>= 1;
        (*sizeConverted)++;
    }
    return kStatus_Success;
}

static uint8_t SEMC_ConvertTiming(uint32_t time_ns, uint32_t clkSrc_Hz)
{
    assert(clkSrc_Hz);

    uint8_t clockCycles = 0;
    uint32_t tClk_us;

    clkSrc_Hz /= 1000000;
    tClk_us = 1000000 / clkSrc_Hz;

    while (tClk_us * clockCycles < (time_ns * 1000)) {
        clockCycles++;
    }

    return clockCycles;
}

static status_t SEMC_ConfigureIPCommand(SEMC_Type *base, uint8_t size_bytes)
{
    if ((size_bytes > SEMC_IPCOMMANDDATASIZEBYTEMAX) || (!size_bytes)) {
        return kStatus_SEMC_InvalidIpcmdDataSize;
    }

    /* Set data size. */
    /* Note: It is better to set data size as the device data port width when transfering
     *    device command data. but for device memory data transfer, it can be set freely.
     * Note: If the data size is greater than data port width, for example, datsz = 4, data port = 16bit,
     *    then the 4-byte data transfer will be split into two 2-byte transfer, the slave address
     *    will be switched automatically according to connected device type*/
    base->IPCR1 = SEMC_IPCR1_DATSZ(size_bytes);
    /* Clear data size. */
    base->IPCR2 = 0;
    /* Set data size. */
    if (size_bytes < 4) {
        base->IPCR2 |= SEMC_IPCR2_BM3_MASK;
    }
    if (size_bytes < 3) {
        base->IPCR2 |= SEMC_IPCR2_BM2_MASK;
    }
    if (size_bytes < 2) {
        base->IPCR2 |= SEMC_IPCR2_BM1_MASK;
    }
    return kStatus_Success;
}

static status_t SEMC_IsIPCommandDone(SEMC_Type *base)
{
    /* Poll status bit till command is done*/
    while (!(base->INTR & SEMC_INTR_IPCMDDONE_MASK)) {};

    /* Clear status bit */
    base->INTR |= SEMC_INTR_IPCMDDONE_MASK;

    /* Check error status */
    if (base->INTR & SEMC_INTR_IPCMDERR_MASK) {
        base->INTR |= SEMC_INTR_IPCMDERR_MASK;
        return kStatus_SEMC_IpCommandExecutionError;
    }

    return kStatus_Success;
}

void SEMC_GetDefaultConfig(semc_config_t *config)
{
    assert(config);

    semc_axi_queueweight_t queueWeight; /*!< AXI queue weight. */
    semc_queuea_weight_t queueaWeight;
    semc_queueb_weight_t queuebWeight;

    /* Get default settings. */
    config->dqsMode          = kSEMC_Loopbackinternal;
    config->cmdTimeoutCycles = 0;
    config->busTimeoutCycles = 0x1F;

    /* Set a typical weight settings. */
    memset((void *)&queueWeight, 0, sizeof(semc_axi_queueweight_t));

    queueaWeight.qos              = SEMC_BMCR0_TYPICAL_WQOS;
    queueaWeight.aging            = SEMC_BMCR0_TYPICAL_WAGE;
    queueaWeight.slaveHitSwith    = SEMC_BMCR0_TYPICAL_WSH;
    queueaWeight.slaveHitNoswitch = SEMC_BMCR0_TYPICAL_WRWS;
    queuebWeight.qos              = SEMC_BMCR1_TYPICAL_WQOS;
    queuebWeight.aging            = SEMC_BMCR1_TYPICAL_WAGE;
    queuebWeight.slaveHitSwith    = SEMC_BMCR1_TYPICAL_WRWS;
    queuebWeight.weightPagehit    = SEMC_BMCR1_TYPICAL_WPH;
    queuebWeight.bankRotation     = SEMC_BMCR1_TYPICAL_WBR;

    config->queueWeight.queueaWeight = &queueaWeight;
    config->queueWeight.queuebWeight = &queuebWeight;
}

void SEMC_Init(SEMC_Type *base, semc_config_t *configure)
{
    assert(configure);

    uint8_t index = 0;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Un-gate sdram controller clock. */
    CLOCK_EnableClock(s_semcClock[SEMC_GetInstance(base)]);
    CLOCK_EnableClock(s_semcExtClock[SEMC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Initialize all BR to zero due to the default base address set. */
    for (index = 0; index < SEMC_BR_REG_NUM; index++) {
        base->BR[index] = 0;
    }

    /* Software reset for SEMC internal logical . */
    base->MCR = SEMC_MCR_SWRST_MASK;
    while (base->MCR & SEMC_MCR_SWRST_MASK) {}

    /* Configure, disable module first. */
    base->MCR |= SEMC_MCR_MDIS_MASK | SEMC_MCR_BTO(configure->busTimeoutCycles) |
                 SEMC_MCR_CTO(configure->cmdTimeoutCycles) | SEMC_MCR_DQSMD(configure->dqsMode);

    /* Configure Queue 0/1 for AXI bus. */
    if (configure->queueWeight.queueaWeight) {
        base->BMCR0 = (uint32_t)(configure->queueWeight.queueaWeight);
    }
    if (configure->queueWeight.queuebWeight) {
        base->BMCR1 = (uint32_t)(configure->queueWeight.queuebWeight);
    }
    /* Enable SEMC. */
    base->MCR &= ~SEMC_MCR_MDIS_MASK;
}

void SEMC_Deinit(SEMC_Type *base)
{
    /* Disable module.  Check there is no pending command before disable module.  */
    while (!(base->STS0 & SEMC_STS0_IDLE_MASK)) {
        ;
    }

    base->MCR |= SEMC_MCR_MDIS_MASK | SEMC_MCR_SWRST_MASK;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Disable SDRAM clock. */
    CLOCK_DisableClock(s_semcClock[SEMC_GetInstance(base)]);
    CLOCK_DisableClock(s_semcExtClock[SEMC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

status_t SEMC_ConfigureSDRAM(SEMC_Type *base, semc_sdram_cs_t cs, semc_sdram_config_t *config, uint32_t clkSrc_Hz)
{
    assert(config);
    assert(clkSrc_Hz);
    assert(config->refreshBurstLen);

    uint8_t memsize;
    status_t result   = kStatus_Success;
    uint16_t prescale = config->tPrescalePeriod_Ns / 16 / (1000000000 / clkSrc_Hz);
    uint16_t refresh;
    uint16_t urgentRef;
    uint16_t idle;
    uint16_t mode;

    if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS)) {
        return kStatus_SEMC_InvalidBaseAddress;
    }

    if (config->csxPinMux == kSEMC_MUXA8) {
        return kStatus_SEMC_InvalidSwPinmuxSelection;
    }

    if (prescale > 256) {
        return kStatus_SEMC_InvalidTimerSetting;
    }

    refresh   = config->refreshPeriod_nsPerRow / config->tPrescalePeriod_Ns;
    urgentRef = config->refreshUrgThreshold / config->tPrescalePeriod_Ns;
    idle      = config->tIdleTimeout_Ns / config->tPrescalePeriod_Ns;

    uint32_t iocReg = base->IOCR & ~(SEMC_IOCR_PINMUXBITWIDTH << config->csxPinMux);

    /* Base control. */
    result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
    if (result != kStatus_Success) {
        return result;
    }

    base->BR[cs]   = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
    base->SDRAMCR0 = SEMC_SDRAMCR0_PS(config->portSize) | SEMC_SDRAMCR0_BL(config->burstLen) |
                     SEMC_SDRAMCR0_COL(config->columnAddrBitNum) | SEMC_SDRAMCR0_CL(config->casLatency);
    /* IOMUX setting. */
    if (cs) {
        base->IOCR = iocReg | (cs << config->csxPinMux);
    }

    base->IOCR &= ~SEMC_IOCR_MUX_A8_MASK;

    /* Timing setting. */
    base->SDRAMCR1 = SEMC_SDRAMCR1_PRE2ACT(SEMC_ConvertTiming(config->tPrecharge2Act_Ns, clkSrc_Hz) - 1) |
                     SEMC_SDRAMCR1_ACT2RW(SEMC_ConvertTiming(config->tAct2ReadWrite_Ns, clkSrc_Hz) - 1) |
                     SEMC_SDRAMCR1_RFRC(SEMC_ConvertTiming(config->tRefreshRecovery_Ns, clkSrc_Hz) - 1) |
                     SEMC_SDRAMCR1_WRC(SEMC_ConvertTiming(config->tWriteRecovery_Ns, clkSrc_Hz) - 1) |
                     SEMC_SDRAMCR1_CKEOFF(SEMC_ConvertTiming(config->tCkeOff_Ns, clkSrc_Hz) - 1) |
                     SEMC_SDRAMCR1_ACT2PRE(SEMC_ConvertTiming(config->tAct2Prechage_Ns, clkSrc_Hz) - 1);
    base->SDRAMCR2 =
        SEMC_SDRAMCR2_SRRC(SEMC_ConvertTiming(config->tSelfRefRecovery_Ns, clkSrc_Hz) - 1) |
        SEMC_SDRAMCR2_REF2REF(
            SEMC_ConvertTiming(config->tRefresh2Refresh_Ns, clkSrc_Hz)) |           /* No Minus one to keep with RM */
        SEMC_SDRAMCR2_ACT2ACT(SEMC_ConvertTiming(config->tAct2Act_Ns, clkSrc_Hz)) | /* No Minus one to keep with RM */
        SEMC_SDRAMCR2_ITO(idle);
    base->SDRAMCR3 = SEMC_SDRAMCR3_REBL(config->refreshBurstLen - 1) |
                     /* N * 16 * 1s / clkSrc_Hz = config->tPrescalePeriod_Ns */
                     SEMC_SDRAMCR3_PRESCALE(prescale) | SEMC_SDRAMCR3_RT(refresh) | SEMC_SDRAMCR3_UT(urgentRef);

    SEMC->IPCR1 = 0x2;
    SEMC->IPCR2 = 0;

    result = SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, kSEMC_SDRAMCM_Prechargeall, 0, NULL);
    if (result != kStatus_Success) {
        return result;
    }
    result = SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, kSEMC_SDRAMCM_AutoRefresh, 0, NULL);
    if (result != kStatus_Success) {
        return result;
    }
    result = SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, kSEMC_SDRAMCM_AutoRefresh, 0, NULL);
    if (result != kStatus_Success) {
        return result;
    }
    /* Mode setting value. */
    mode   = (uint16_t)config->burstLen | (uint16_t)(config->casLatency << SEMC_SDRAM_MODESETCAL_OFFSET);
    result = SEMC_SendIPCommand(base, kSEMC_MemType_SDRAM, config->address, kSEMC_SDRAMCM_Modeset, mode, NULL);
    if (result != kStatus_Success) {
        return result;
    }
    /* Enables refresh */
    base->SDRAMCR3 |= SEMC_SDRAMCR3_REN_MASK;

    return kStatus_Success;
}

status_t SEMC_ConfigureNAND(SEMC_Type *base, semc_nand_config_t *config, uint32_t clkSrc_Hz)
{
    assert(config);
    assert(config->timingConfig);

    uint8_t memsize;
    status_t result;

    if ((config->axiAddress < SEMC_STARTADDRESS) || (config->axiAddress > SEMC_ENDADDRESS)) {
        return kStatus_SEMC_InvalidBaseAddress;
    }

    if (config->cePinMux == kSEMC_MUXRDY) {
        return kStatus_SEMC_InvalidSwPinmuxSelection;
    }

    uint32_t iocReg = base->IOCR & ~((SEMC_IOCR_PINMUXBITWIDTH << config->cePinMux) | SEMC_IOCR_MUX_RDY_MASK);

    /* Base control. */
    if (config->rdyactivePolarity == kSEMC_RdyActivehigh) {
        base->MCR |= SEMC_MCR_WPOL1_MASK;
    }
    else {
        base->MCR &= ~SEMC_MCR_WPOL1_MASK;
    }
    result = SEMC_CovertMemorySize(base, config->axiMemsize_kbytes, &memsize);
    if (result != kStatus_Success) {
        return result;
    }
    base->BR[4] = (config->axiAddress & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;

    result = SEMC_CovertMemorySize(base, config->ipgMemsize_kbytes, &memsize);
    if (result != kStatus_Success) {
        return result;
    }
    base->BR[8] = (config->ipgAddress & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;

    /* IOMUX setting. */
    if (config->cePinMux) {
        base->IOCR = iocReg | (SEMC_IOCR_NAND_CE << config->cePinMux);
    }
    else {
        base->IOCR = iocReg | (1U << config->cePinMux);
    }

    base->NANDCR0 = SEMC_NANDCR0_PS(config->portSize) | SEMC_NANDCR0_BL(config->burstLen) |
                    SEMC_NANDCR0_EDO(config->edoModeEnabled) | SEMC_NANDCR0_COL(config->columnAddrBitNum);

    /* Timing setting. */
    base->NANDCR1 = SEMC_NANDCR1_CES(SEMC_ConvertTiming(config->timingConfig->tCeSetup_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR1_CEH(SEMC_ConvertTiming(config->timingConfig->tCeHold_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR1_WEL(SEMC_ConvertTiming(config->timingConfig->tWeLow_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR1_WEH(SEMC_ConvertTiming(config->timingConfig->tWeHigh_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR1_REL(SEMC_ConvertTiming(config->timingConfig->tReLow_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR1_REH(SEMC_ConvertTiming(config->timingConfig->tReHigh_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR1_TA(SEMC_ConvertTiming(config->timingConfig->tTurnAround_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR1_CEITV(SEMC_ConvertTiming(config->timingConfig->tCeInterval_Ns, clkSrc_Hz) - 1);
    base->NANDCR2 = SEMC_NANDCR2_TWHR(SEMC_ConvertTiming(config->timingConfig->tWehigh2Relow_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR2_TRHW(SEMC_ConvertTiming(config->timingConfig->tRehigh2Welow_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR2_TADL(SEMC_ConvertTiming(config->timingConfig->tAle2WriteStart_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR2_TRR(SEMC_ConvertTiming(config->timingConfig->tReady2Relow_Ns, clkSrc_Hz) - 1) |
                    SEMC_NANDCR2_TWB(SEMC_ConvertTiming(config->timingConfig->tWehigh2Busy_Ns, clkSrc_Hz) - 1);
    base->NANDCR3 = config->arrayAddrOption;
    return kStatus_Success;
}

status_t SEMC_ConfigureNOR(SEMC_Type *base, semc_nor_config_t *config, uint32_t clkSrc_Hz)
{
    assert(config);

    uint8_t memsize;
    status_t result;

    if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS)) {
        return kStatus_SEMC_InvalidBaseAddress;
    }

    uint32_t iocReg = base->IOCR & ~(SEMC_IOCR_PINMUXBITWIDTH << config->cePinMux);
    uint32_t muxCe  = (config->cePinMux == kSEMC_MUXRDY)
                         ? SEMC_IOCR_NOR_CE - 1
                         : ((config->cePinMux == kSEMC_MUXA8) ? SEMC_IOCR_NOR_CE_A8 : SEMC_IOCR_NOR_CE);

    /* IOMUX setting. */
    base->IOCR = iocReg | (muxCe << config->cePinMux);
    /* Address bit setting. */
    if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE) {
        if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 1) {
            /* Address bit 24 (A24) */
            base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX0_MASK;
            if (config->cePinMux == kSEMC_MUXCSX0) {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
        }
        if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 2) {
            /* Address bit 25 (A25) */
            base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX1_MASK;
            if (config->cePinMux == kSEMC_MUXCSX1) {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
        }
        if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 3) {
            /* Address bit 26 (A26) */
            base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX2_MASK;
            if (config->cePinMux == kSEMC_MUXCSX2) {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
        }
        if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 4) {
            if (config->addr27 == kSEMC_NORA27_MUXCSX3) {
                /* Address bit 27 (A27) */
                base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX3_MASK;
            }
            else if (config->addr27 == kSEMC_NORA27_MUXRDY) {
                base->IOCR |= SEMC_IOCR_MUX_RDY_MASK;
            }
            else {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
            if (config->cePinMux == kSEMC_MUXCSX3) {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
        }
        if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX) {
            return kStatus_SEMC_InvalidAddressPortWidth;
        }
    }

    /* Base control. */
    if (config->rdyactivePolarity == kSEMC_RdyActivehigh) {
        base->MCR |= SEMC_MCR_WPOL0_MASK;
    }
    else {
        base->MCR &= ~SEMC_MCR_WPOL0_MASK;
    }
    result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
    if (result != kStatus_Success) {
        return result;
    }
    base->BR[5]  = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
    base->NORCR0 = SEMC_NORCR0_PS(config->portSize) | SEMC_NORCR0_BL(config->burstLen) |
                   SEMC_NORCR0_AM(config->addrMode) | SEMC_NORCR0_ADVP(config->advActivePolarity) |
                   SEMC_NORCR0_COL(config->columnAddrBitNum);

    /* Timing setting. */
    base->NORCR1 = SEMC_NORCR1_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz)) |
                   SEMC_NORCR1_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz)) |
                   SEMC_NORCR1_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz)) |
                   SEMC_NORCR1_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz)) |
                   SEMC_NORCR1_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz)) |
                   SEMC_NORCR1_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz)) |
                   SEMC_NORCR1_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz)) |
                   SEMC_NORCR1_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));
    base->NORCR2 = SEMC_NORCR2_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz)) |
                   SEMC_NORCR2_WDH(SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz)) |
                   SEMC_NORCR2_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz)) |
                   SEMC_NORCR2_AWDH(SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz) + 1) |
                   SEMC_NORCR2_LC(config->latencyCount) | SEMC_NORCR2_RD(config->readCycle) |
                   SEMC_NORCR2_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));

    return SEMC_ConfigureIPCommand(base, (config->portSize + 1));
}

status_t SEMC_ConfigureSRAM(SEMC_Type *base, semc_sram_config_t *config, uint32_t clkSrc_Hz)
{
    assert(config);

    uint8_t memsize;
    status_t result = kStatus_Success;

    if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS)) {
        return kStatus_SEMC_InvalidBaseAddress;
    }

    uint32_t iocReg = base->IOCR & ~(SEMC_IOCR_PINMUXBITWIDTH << config->cePinMux);
    uint32_t muxCe  = (config->cePinMux == kSEMC_MUXRDY)
                         ? SEMC_IOCR_PSRAM_CE - 1
                         : ((config->cePinMux == kSEMC_MUXA8) ? SEMC_IOCR_PSRAM_CE_A8 : SEMC_IOCR_PSRAM_CE);

    /* IOMUX setting. */
    base->IOCR = iocReg | (muxCe << config->cePinMux);
    /* Address bit setting. */
    if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE) {
        if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 1) {
            /* Address bit 24 (A24) */
            base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX0_MASK;
            if (config->cePinMux == kSEMC_MUXCSX0) {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
        }
        if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 2) {
            /* Address bit 25 (A25) */
            base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX1_MASK;
            if (config->cePinMux == kSEMC_MUXCSX1) {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
        }
        if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 3) {
            /* Address bit 26 (A26) */
            base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX2_MASK;
            if (config->cePinMux == kSEMC_MUXCSX2) {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
        }
        if (config->addrPortWidth >= SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHBASE + 4) {
            if (config->addr27 == kSEMC_NORA27_MUXCSX3) {
                /* Address bit 27 (A27) */
                base->IOCR &= (uint32_t)~SEMC_IOCR_MUX_CSX3_MASK;
            }
            else if (config->addr27 == kSEMC_NORA27_MUXRDY) {
                base->IOCR |= SEMC_IOCR_MUX_RDY_MASK;
            }
            else {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }

            if (config->cePinMux == kSEMC_MUXCSX3) {
                return kStatus_SEMC_InvalidSwPinmuxSelection;
            }
        }
        if (config->addrPortWidth > SEMC_NORFLASH_SRAM_ADDR_PORTWIDTHMAX) {
            return kStatus_SEMC_InvalidAddressPortWidth;
        }
    }
    /* Base control. */
    result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
    if (result != kStatus_Success) {
        return result;
    }
    base->BR[6]   = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
    base->SRAMCR0 = SEMC_SRAMCR0_PS(config->portSize) | SEMC_SRAMCR0_BL(config->burstLen) |
                    SEMC_SRAMCR0_AM(config->addrMode) | SEMC_SRAMCR0_ADVP(config->advActivePolarity) |
                    SEMC_SRAMCR0_COL_MASK;

    /* Timing setting. */
    base->SRAMCR1 = SEMC_SRAMCR1_CES(SEMC_ConvertTiming(config->tCeSetup_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR1_CEH(SEMC_ConvertTiming(config->tCeHold_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR1_AS(SEMC_ConvertTiming(config->tAddrSetup_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR1_AH(SEMC_ConvertTiming(config->tAddrHold_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR1_WEL(SEMC_ConvertTiming(config->tWeLow_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR1_WEH(SEMC_ConvertTiming(config->tWeHigh_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR1_REL(SEMC_ConvertTiming(config->tReLow_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR1_REH(SEMC_ConvertTiming(config->tReHigh_Ns, clkSrc_Hz));

    base->SRAMCR2 = SEMC_SRAMCR2_WDS(SEMC_ConvertTiming(config->tWriteSetup_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR2_WDH(SEMC_ConvertTiming(config->tWriteHold_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR2_TA(SEMC_ConvertTiming(config->tTurnAround_Ns, clkSrc_Hz)) |
                    SEMC_SRAMCR2_AWDH(SEMC_ConvertTiming(config->tAddr2WriteHold_Ns, clkSrc_Hz) + 1) |
                    SEMC_SRAMCR2_LC(config->latencyCount) | SEMC_SRAMCR2_RD(config->readCycle) |
                    SEMC_SRAMCR2_CEITV(SEMC_ConvertTiming(config->tCeInterval_Ns, clkSrc_Hz));

    return result;
}

status_t SEMC_ConfigureDBI(SEMC_Type *base, semc_dbi_config_t *config, uint32_t clkSrc_Hz)
{
    assert(config);

    uint8_t memsize;
    status_t result;

    if ((config->address < SEMC_STARTADDRESS) || (config->address > SEMC_ENDADDRESS)) {
        return kStatus_SEMC_InvalidBaseAddress;
    }

    uint32_t iocReg = base->IOCR & ~(SEMC_IOCR_PINMUXBITWIDTH << config->csxPinMux);
    uint32_t muxCsx = (config->csxPinMux == kSEMC_MUXRDY)
                          ? SEMC_IOCR_DBI_CSX - 1
                          : ((config->csxPinMux == kSEMC_MUXA8) ? SEMC_IOCR_DBI_CSX_A8 : SEMC_IOCR_DBI_CSX);

    /* IOMUX setting. */
    base->IOCR = iocReg | (muxCsx << config->csxPinMux);
    /* Base control. */
    result = SEMC_CovertMemorySize(base, config->memsize_kbytes, &memsize);
    if (result != kStatus_Success) {
        return result;
    }
    base->BR[7] = (config->address & SEMC_BR_BA_MASK) | SEMC_BR_MS(memsize) | SEMC_BR_VLD_MASK;
    base->DBICR0 =
        SEMC_DBICR0_PS(config->portSize) | SEMC_DBICR0_BL(config->burstLen) | SEMC_DBICR0_COL(config->columnAddrBitNum);

    /* Timing setting. */
    base->DBICR1 = SEMC_DBICR1_CES(SEMC_ConvertTiming(config->tCsxSetup_Ns, clkSrc_Hz)) |
                   SEMC_DBICR1_CEH(SEMC_ConvertTiming(config->tCsxHold_Ns, clkSrc_Hz)) |
                   SEMC_DBICR1_WEL(SEMC_ConvertTiming(config->tWexLow_Ns, clkSrc_Hz)) |
                   SEMC_DBICR1_WEH(SEMC_ConvertTiming(config->tWexHigh_Ns, clkSrc_Hz)) |
                   SEMC_DBICR1_REL(SEMC_ConvertTiming(config->tRdxLow_Ns, clkSrc_Hz)) |
                   SEMC_DBICR1_REH(SEMC_ConvertTiming(config->tRdxHigh_Ns, clkSrc_Hz)) |
                   SEMC_DBICR1_CEITV(SEMC_ConvertTiming(config->tCsxInterval_Ns, clkSrc_Hz));
    return SEMC_ConfigureIPCommand(base, (config->portSize + 1));
}

status_t SEMC_SendIPCommand(
    SEMC_Type *base, semc_mem_type_t type, uint32_t address, uint16_t command, uint32_t write, uint32_t *read)
{
    uint32_t cmdMode;
    bool readCmd  = 0;
    bool writeCmd = 0;
    status_t result;

    /* Clear status bit */
    base->INTR |= SEMC_INTR_IPCMDDONE_MASK;
    /* Set address. */
    base->IPCR0 = address;

    /* Check command mode. */
    cmdMode = command & 0xFU;
    switch (type) {
    case kSEMC_MemType_NAND:
        readCmd = (cmdMode == kSEMC_NANDCM_CommandAddressRead) || (cmdMode == kSEMC_NANDCM_CommandRead) ||
                  (cmdMode == kSEMC_NANDCM_Read);
        writeCmd = (cmdMode == kSEMC_NANDCM_CommandAddressWrite) || (cmdMode == kSEMC_NANDCM_CommandWrite) ||
                   (cmdMode == kSEMC_NANDCM_Write);
        break;
    case kSEMC_MemType_NOR:
    case kSEMC_MemType_8080:
        readCmd  = (cmdMode == kSEMC_NORDBICM_Read);
        writeCmd = (cmdMode == kSEMC_NORDBICM_Write);
        break;
    case kSEMC_MemType_SRAM:
        readCmd  = (cmdMode == kSEMC_SRAMCM_ArrayRead) || (cmdMode == kSEMC_SRAMCM_RegRead);
        writeCmd = (cmdMode == kSEMC_SRAMCM_ArrayWrite) || (cmdMode == kSEMC_SRAMCM_RegWrite);
        break;
    case kSEMC_MemType_SDRAM:
        readCmd  = (cmdMode == kSEMC_SDRAMCM_Read);
        writeCmd = (cmdMode == kSEMC_SDRAMCM_Write) || (cmdMode == kSEMC_SDRAMCM_Modeset);
        break;
    default:
        break;
    }

    if (writeCmd) {
        /* Set data. */
        base->IPTXDAT = write;
    }

    /* Set command code. */
    base->IPCMD = command | SEMC_IPCMD_KEY(SEMC_IPCOMMANDMAGICKEY);
    /* Wait for command done. */
    result = SEMC_IsIPCommandDone(base);
    if (result != kStatus_Success) {
        return result;
    }

    if (readCmd) {
        /* Get the read data */
        *read = base->IPRXDAT;
    }

    return kStatus_Success;
}

status_t SEMC_IPCommandNandWrite(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
    assert(data);

    status_t result = kStatus_Success;
    uint16_t ipCmd;
    uint32_t tempData = 0;

    /* Write command built */
    ipCmd = SEMC_BuildNandIPCommand(0, kSEMC_NANDAM_ColumnRow, kSEMC_NANDCM_Write);
    while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX) {
        /* Configure IP command data size. */
        SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
        result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, *(uint32_t *)data, NULL);
        if (result != kStatus_Success) {
            break;
        }

        data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
        size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
    }

    if ((result == kStatus_Success) && size_bytes) {
        SEMC_ConfigureIPCommand(base, size_bytes);

        while (size_bytes) {
            tempData |= ((uint32_t) * (data + size_bytes - 1) << ((size_bytes - 1) * SEMC_BYTE_NUMBIT));
            size_bytes--;
        }

        result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, tempData, NULL);
    }

    return result;
}

status_t SEMC_IPCommandNandRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
    assert(data);

    status_t result = kStatus_Success;
    uint16_t ipCmd;
    uint32_t tempData = 0;

    /* Configure IP command data size. */
    SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
    /* Read command built */
    ipCmd = SEMC_BuildNandIPCommand(0, kSEMC_NANDAM_ColumnRow, kSEMC_NANDCM_Read);

    while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX) {
        result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, 0, (uint32_t *)data);
        if (result != kStatus_Success) {
            break;
        }

        data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
        size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
    }

    if ((result == kStatus_Success) && size_bytes) {
        SEMC_ConfigureIPCommand(base, size_bytes);
        result = SEMC_SendIPCommand(base, kSEMC_MemType_NAND, address, ipCmd, 0, &tempData);

        while (size_bytes) {
            size_bytes--;
            *(data + size_bytes) = (tempData >> (SEMC_BYTE_NUMBIT * size_bytes)) & 0xFFU;
        }
    }

    return result;
}

status_t SEMC_IPCommandNorRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
    assert(data);

    uint32_t tempData = 0;
    status_t result   = kStatus_Success;
    uint8_t dataSize  = base->NORCR0 & SEMC_NORCR0_PS_MASK;

    /* Configure IP command data size. */
    SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);

    while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX) {
        result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, kSEMC_NORDBICM_Read, 0, (uint32_t *)data);
        if (result != kStatus_Success) {
            break;
        }

        data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
        size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
    }

    if ((result == kStatus_Success) && size_bytes) {
        SEMC_ConfigureIPCommand(base, size_bytes);
        result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, kSEMC_NORDBICM_Read, 0, &tempData);
        while (size_bytes) {
            size_bytes--;
            *(data + size_bytes) = (tempData >> (SEMC_BYTE_NUMBIT * size_bytes)) & 0xFFU;
        }
    }

    SEMC_ConfigureIPCommand(base, dataSize);
    return result;
}

status_t SEMC_IPCommandNorWrite(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t size_bytes)
{
    assert(data);

    uint32_t tempData = 0;
    status_t result   = kStatus_Success;
    uint8_t dataSize  = base->NORCR0 & SEMC_NORCR0_PS_MASK;

    /* Write command built */
    while (size_bytes >= SEMC_IPCOMMANDDATASIZEBYTEMAX) {
        /* Configure IP command data size. */
        SEMC_ConfigureIPCommand(base, SEMC_IPCOMMANDDATASIZEBYTEMAX);
        result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, kSEMC_NORDBICM_Write, *(uint32_t *)data, NULL);
        if (result != kStatus_Success) {
            break;
        }
        size_bytes -= SEMC_IPCOMMANDDATASIZEBYTEMAX;
        data += SEMC_IPCOMMANDDATASIZEBYTEMAX;
    }

    if ((result == kStatus_Success) && size_bytes) {
        SEMC_ConfigureIPCommand(base, size_bytes);

        while (size_bytes) {
            tempData |= ((uint32_t) * (data + size_bytes - 1) << ((size_bytes - 1) * SEMC_BYTE_NUMBIT));
            size_bytes--;
        }

        result = SEMC_SendIPCommand(base, kSEMC_MemType_NOR, address, kSEMC_NORDBICM_Write, tempData, NULL);
    }
    SEMC_ConfigureIPCommand(base, dataSize);

    return result;
}