~aleteoryx/muditaos

ref: e33f5fda3e6b383e8700f401cd54b87f0787f641 muditaos/module-sys/SystemManager/PowerManager.cpp -rw-r--r-- 9.4 KiB
e33f5fda — Tomasz Rybarski [BH-1223] Global idle return timer 180s 4 years ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Copyright (c) 2017-2021, Mudita Sp. z.o.o. All rights reserved.
// For licensing, see https://github.com/mudita/MuditaOS/LICENSE.md

#include <log/log.hpp>

#include <SystemManager/PowerManager.hpp>

namespace sys
{
    namespace
    {
        constexpr auto lowestLevelName{"lowestCpuFrequency"};
        constexpr auto middleLevelName{"middleCpuFrequency"};
        constexpr auto highestLevelName{"highestCpuFrequency"};
    } // namespace

    CpuFrequencyMonitor::CpuFrequencyMonitor(const std::string name) : levelName(name)
    {}

    [[nodiscard]] auto CpuFrequencyMonitor::GetName() const noexcept -> std::string
    {
        return levelName;
    }

    [[nodiscard]] auto CpuFrequencyMonitor::GetRuntimePercentage() const noexcept -> std::uint32_t
    {
        auto tickCount = xTaskGetTickCount();
        return tickCount == 0 ? 0 : ((totalTicksCount * 100) / tickCount);
    }

    void CpuFrequencyMonitor::IncreaseTicks(TickType_t ticks)
    {
        totalTicksCount += ticks;
    }

    PowerManager::PowerManager() : powerProfile{bsp::getPowerProfile()}
    {
        lowPowerControl = bsp::LowPowerMode::Create().value_or(nullptr);
        driverSEMC      = drivers::DriverSEMC::Create("ExternalRAM");
        cpuGovernor     = std::make_unique<CpuGovernor>();

        cpuFrequencyMonitor.push_back(CpuFrequencyMonitor(lowestLevelName));
        cpuFrequencyMonitor.push_back(CpuFrequencyMonitor(middleLevelName));
        cpuFrequencyMonitor.push_back(CpuFrequencyMonitor(highestLevelName));
    }

    PowerManager::~PowerManager()
    {}

    int32_t PowerManager::PowerOff()
    {
        return lowPowerControl->PowerOff();
    }

    int32_t PowerManager::Reboot()
    {
        return lowPowerControl->Reboot(bsp::LowPowerMode::RebootType::NormalRestart);
    }

    int32_t PowerManager::RebootToUpdate(UpdateReason reason)
    {
        switch (reason) {
        case UpdateReason::FactoryReset:
            return lowPowerControl->Reboot(bsp::LowPowerMode::RebootType::GoToUpdaterFactoryReset);
        case UpdateReason::Recovery:
            return lowPowerControl->Reboot(bsp::LowPowerMode::RebootType::GoToUpdaterRecovery);
        case UpdateReason::Update:
            return lowPowerControl->Reboot(bsp::LowPowerMode::RebootType::GoToUpdaterUpdate);
        default:
            return -1;
        }
    }

    void PowerManager::UpdateCpuFrequency(uint32_t cpuLoad)
    {
        const auto currentCpuFreq        = lowPowerControl->GetCurrentFrequencyLevel();
        const auto minFrequencyRequested = cpuGovernor->GetMinimumFrequencyRequested();

        if (cpuLoad > powerProfile.frequencyShiftUpperThreshold && currentCpuFreq < bsp::CpuFrequencyHz::Level_6) {
            aboveThresholdCounter++;
            belowThresholdCounter = 0;
        }
        else if (cpuLoad < powerProfile.frequencyShiftLowerThreshold &&
                 currentCpuFreq > powerProfile.minimalFrequency) {
            belowThresholdCounter++;
            aboveThresholdCounter = 0;
        }
        else {
            ResetFrequencyShiftCounter();
        }

        if (!belowThresholdCounter) {
            isFrequencyLoweringInProgress = false;
        }

        if (minFrequencyRequested > currentCpuFreq) {
            ResetFrequencyShiftCounter();
            IncreaseCpuFrequency(minFrequencyRequested);
        }
        else if (aboveThresholdCounter >= powerProfile.maxAboveThresholdCount) {
            if (powerProfile.frequencyIncreaseIntermediateStep && currentCpuFreq < bsp::CpuFrequencyHz::Level_4) {
                ResetFrequencyShiftCounter();
                IncreaseCpuFrequency(bsp::CpuFrequencyHz::Level_4);
            }
            else {
                ResetFrequencyShiftCounter();
                IncreaseCpuFrequency(bsp::CpuFrequencyHz::Level_6);
            }
        }
        else {
            if (belowThresholdCounter >= (isFrequencyLoweringInProgress ? powerProfile.maxBelowThresholdInRowCount
                                                                        : powerProfile.maxBelowThresholdCount) &&
                currentCpuFreq > minFrequencyRequested) {
                ResetFrequencyShiftCounter();
                DecreaseCpuFrequency();
            }
        }
    }

    void PowerManager::IncreaseCpuFrequency(bsp::CpuFrequencyHz newFrequency)
    {
        const auto freq = lowPowerControl->GetCurrentFrequencyLevel();

        if ((freq <= bsp::CpuFrequencyHz::Level_1) && (newFrequency > bsp::CpuFrequencyHz::Level_1)) {
            // connect internal the load resistor
            lowPowerControl->ConnectInternalLoadResistor();
            // turn off power save mode for DCDC inverter
            lowPowerControl->DisableDcdcPowerSaveMode();
            // Switch DCDC to full throttle during oscillator switch
            lowPowerControl->SetHighestCoreVoltage();
            // Enable regular 2P5 and 1P1 LDO and Turn off weak 2P5 and 1P1 LDO
            lowPowerControl->SwitchToRegularModeLDO();
            // switch oscillator source
            lowPowerControl->SwitchOscillatorSource(bsp::LowPowerMode::OscillatorSource::External);
            // then switch external RAM clock source
            if (driverSEMC) {
                driverSEMC->SwitchToPLL2ClockSource();
            }
            // Add intermediate step in frequency
            if (newFrequency > bsp::CpuFrequencyHz::Level_4)
                SetCpuFrequency(bsp::CpuFrequencyHz::Level_4);
        }

        // and increase frequency
        if (freq < newFrequency) {
            SetCpuFrequency(newFrequency);
        }
    }

    void PowerManager::DecreaseCpuFrequency()
    {
        const auto freq = lowPowerControl->GetCurrentFrequencyLevel();
        auto level      = powerProfile.minimalFrequency;

        switch (freq) {
        case bsp::CpuFrequencyHz::Level_6:
            level = bsp::CpuFrequencyHz::Level_5;
            break;
        case bsp::CpuFrequencyHz::Level_5:
            level = bsp::CpuFrequencyHz::Level_4;
            break;
        case bsp::CpuFrequencyHz::Level_4:
            level = bsp::CpuFrequencyHz::Level_3;
            break;
        case bsp::CpuFrequencyHz::Level_3:
            level = bsp::CpuFrequencyHz::Level_2;
            break;
        case bsp::CpuFrequencyHz::Level_2:
            level = powerProfile.minimalFrequency;
            break;
        case bsp::CpuFrequencyHz::Level_1:
            [[fallthrough]];
        case bsp::CpuFrequencyHz::Level_0:
            break;
        }

        // decrease frequency first
        if (level != freq) {
            SetCpuFrequency(level);
        }

        if (level <= bsp::CpuFrequencyHz::Level_1) {
            // Enable weak 2P5 and 1P1 LDO and Turn off regular 2P5 and 1P1 LDO
            lowPowerControl->SwitchToLowPowerModeLDO();

            // then switch osc source
            lowPowerControl->SwitchOscillatorSource(bsp::LowPowerMode::OscillatorSource::Internal);

            // and switch external RAM clock source
            if (driverSEMC) {
                driverSEMC->SwitchToPeripheralClockSource();
            }

            // turn on power save mode for DCDC inverter
            lowPowerControl->EnableDcdcPowerSaveMode();

            // disconnect internal the load resistor
            lowPowerControl->DisconnectInternalLoadResistor();
        }

        isFrequencyLoweringInProgress = true;
    }

    void PowerManager::RegisterNewSentinel(std::shared_ptr<CpuSentinel> newSentinel) const
    {
        cpuGovernor->RegisterNewSentinel(newSentinel);
    }

    void PowerManager::SetCpuFrequencyRequest(std::string sentinelName, bsp::CpuFrequencyHz request)
    {
        cpuGovernor->SetCpuFrequencyRequest(std::move(sentinelName), request);
    }

    void PowerManager::ResetCpuFrequencyRequest(std::string sentinelName)
    {
        cpuGovernor->ResetCpuFrequencyRequest(std::move(sentinelName));
    }

    void PowerManager::SetCpuFrequency(bsp::CpuFrequencyHz freq)
    {
        UpdateCpuFrequencyMonitor(lowPowerControl->GetCurrentFrequencyLevel());
        lowPowerControl->SetCpuFrequency(freq);
        cpuGovernor->InformSentinelsAboutCpuFrequencyChange(freq);
    }

    void PowerManager::ResetFrequencyShiftCounter()
    {
        aboveThresholdCounter = 0;
        belowThresholdCounter = 0;
    }

    [[nodiscard]] auto PowerManager::getExternalRamDevice() const noexcept -> std::shared_ptr<devices::Device>
    {
        return driverSEMC;
    }

    void PowerManager::UpdateCpuFrequencyMonitor(bsp::CpuFrequencyHz currentFreq)
    {
        auto ticks     = xTaskGetTickCount();
        auto levelName = currentFreq == powerProfile.minimalFrequency
                             ? lowestLevelName
                             : (currentFreq == bsp::CpuFrequencyHz::Level_6 ? highestLevelName : middleLevelName);

        for (auto &level : cpuFrequencyMonitor) {
            if (level.GetName() == levelName) {
                level.IncreaseTicks(ticks - lastCpuFrequencyChangeTimestamp);
            }
        }

        lastCpuFrequencyChangeTimestamp = ticks;
    }

    void PowerManager::LogPowerManagerEfficiency()
    {
        std::string log{"PowerManager Efficiency: "};
        UpdateCpuFrequencyMonitor(lowPowerControl->GetCurrentFrequencyLevel());

        for (auto &level : cpuFrequencyMonitor) {
            log.append(level.GetName() + ": " + std::to_string(level.GetRuntimePercentage()) + "% ");
        }

        LOG_INFO("%s", log.c_str());
    }

    void PowerManager::SetBootSuccess()
    {
        lowPowerControl->SetBootSuccess();
    }

} // namespace sys