~aleteoryx/muditaos

ref: master muditaos/host-tools/pure-flash/pure-flash.c -rw-r--r-- 8.1 KiB
2cd0e472 — Lefucjusz [BH-000] Update Harmony 2.10.0 changelog 2 months ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright (c) 2017-2024, Mudita Sp. z.o.o. All rights reserved.
// For licensing, see https://github.com/mudita/MuditaOS/blob/master/LICENSE.md

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <stdbool.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>

#include <linux/fs.h>
#include <linux/fiemap.h>

static void syntax(char **argv)
{
    fprintf(stderr, "%s filename blkdev\n", argv[0]);
}

static struct fiemap *read_fiemap(int fd)
{
    struct fiemap *fiemap;
    int extents_size;

    if ((fiemap = (struct fiemap *)malloc(sizeof(struct fiemap))) == NULL) {
        fprintf(stderr, "Out of memory allocating fiemap\n");
        return NULL;
    }
    memset(fiemap, 0, sizeof(struct fiemap));

    fiemap->fm_start          = 0;
    fiemap->fm_length         = ~0; /* Lazy */
    fiemap->fm_flags          = 0;
    fiemap->fm_extent_count   = 0;
    fiemap->fm_mapped_extents = 0;

    /* Find out how many extents there are */
    if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) {
        fprintf(stderr, "fiemap ioctl() failed\n");
        return NULL;
    }

    /* Read in the extents */
    extents_size = sizeof(struct fiemap_extent) * (fiemap->fm_mapped_extents);

    /* Resize fiemap to allow us to read in the extents */
    if ((fiemap = (struct fiemap *)realloc(fiemap, sizeof(struct fiemap) + extents_size)) == NULL) {
        fprintf(stderr, "Out of memory allocating fiemap\n");
        return NULL;
    }

    memset(fiemap->fm_extents, 0, extents_size);
    fiemap->fm_extent_count   = fiemap->fm_mapped_extents;
    fiemap->fm_mapped_extents = 0;

    if (ioctl(fd, FS_IOC_FIEMAP, fiemap) < 0) {
        fprintf(stderr, "fiemap ioctl() failed\n");
        return NULL;
    }
    return fiemap;
}

static off_t compare_extent(int fd1, int fd2, off_t start_offs, size_t len)
{
    char buf1[32768], buf2[32768];
    off_t offs;
    ssize_t res1, res2;
    size_t segpos = 0;
    offs          = lseek(fd1, start_offs, SEEK_SET);
    if (offs < 0)
        return offs;
    offs = lseek(fd2, start_offs, SEEK_SET);
    if (offs < 0)
        return offs;
    while (len > 0) {
        const size_t rdsiz = (len > sizeof(buf1)) ? (sizeof buf1) : (len);
        res1               = read(fd1, buf1, rdsiz);
        res2               = read(fd2, buf2, rdsiz);
        if (res1 == res2 && res1 > 0) {
            if (memcmp(buf1, buf2, res1) == 0) {
                len -= res1;
                segpos += res1;
            }
            else {
                return start_offs + segpos + 1;
            }
        }
        else {
            return start_offs + segpos + 1;
        }
    }
    return 0;
}

static ssize_t write_all(int fd, const char *buf, ssize_t size)
{
    ssize_t res;
    while (size > 0 && (res = write(fd, buf, size)) != size) {
        if (res < 0 && errno == EINTR)
            continue;
        else if (res < 0) {
            return res;
        }
        size -= res;
        buf += res;
    }
    return 0;
}

static off_t copy_extent(int fd_dest, int fd_src, off_t start_offs, size_t len)
{
    char copy_buf[32768];
    off_t offs = lseek(fd_dest, start_offs, SEEK_SET);
    if (offs < 0)
        return offs;
    offs = lseek(fd_src, start_offs, SEEK_SET);
    if (offs < 0)
        return offs;
    while (len > 0) {
        const size_t nread = len > sizeof(copy_buf) ? sizeof(copy_buf) : len;
        ssize_t rlen       = read(fd_src, copy_buf, nread);
        if (rlen < 0 && errno == EINTR)
            continue;
        else if (rlen > 0) {
            ssize_t res = write_all(fd_dest, copy_buf, rlen);
            if (res == 0) {
                len -= rlen;
            }
            else {
                return -1;
            }
        }
        else {
            return -1;
        }
    }
    return 0;
}

static int verify_image(const char *image_file, const char *block_device)
{
    int fd_sparse, fd_block;
    if ((fd_sparse = open(image_file, O_RDONLY)) < 0) {
        fprintf(stderr, "Cannot open sparse file %s\n", image_file);
        return EXIT_FAILURE;
    }
    if ((fd_block = open(block_device, O_RDONLY)) < 0) {
        fprintf(stderr, "Cannot open block device %s\n", block_device);
        close(fd_sparse);
        return EXIT_FAILURE;
    }
    struct fiemap *fiemap;
    if (!(fiemap = read_fiemap(fd_sparse))) {
        fprintf(stderr, "Unable to read fiemap %s\n", image_file);
        close(fd_sparse);
        close(fd_block);
        return EXIT_FAILURE;
    }
    printf("File %s verify %d extents:\n", image_file, fiemap->fm_mapped_extents);
    printf("#\tOffset          Length           Verify\n");
    off_t result = -1;
    for (unsigned i = 0; i < fiemap->fm_mapped_extents; i++) {
        result = compare_extent(fd_sparse, fd_block, fiemap->fm_extents[i].fe_logical, fiemap->fm_extents[i].fe_length);
        printf("%d:\t%-16.16llx %-16.16llx ", i, fiemap->fm_extents[i].fe_logical, fiemap->fm_extents[i].fe_length);
        if (result) {
            printf("ERR (%lx)\n", result);
        }
        else {
            printf("OK\n");
        }
        if (result) {
            if (result >= 0) {
                fprintf(stderr, "Error: Data mismatch at offset %ld\n", result);
            }
            else {
                perror("System error (Verify):");
            }
            break;
        }
    }
    close(fd_sparse);
    close(fd_block);
    free(fiemap);
    return (result ? EXIT_FAILURE : EXIT_SUCCESS);
}

static int write_image(const char *image_file, const char *block_device)
{
    struct stat sbuf;
    if (stat(image_file, &sbuf)) {
        perror("System error (stat image_file):");
        return EXIT_FAILURE;
    }
    if (!S_ISREG(sbuf.st_mode)) {
        fprintf(stderr, "Error: %s is not a regular file\n", image_file);
        return EXIT_FAILURE;
    }
    if (stat(block_device, &sbuf)) {
        perror("System error (stat block_device):");
        return EXIT_FAILURE;
    }
    if (!S_ISBLK(sbuf.st_mode)) {
        fprintf(stderr, "Error: %s is not a block device\n", block_device);
        return EXIT_FAILURE;
    }
    int fd_sparse, fd_block;
    if ((fd_sparse = open(image_file, O_RDONLY)) < 0) {
        fprintf(stderr, "Error: Cannot open sparse file %s\n", image_file);
        return EXIT_FAILURE;
    }
    if ((fd_block = open(block_device, O_WRONLY)) < 0) {
        fprintf(stderr, "Error: Cannot open block device %s\n", block_device);
        close(fd_sparse);
        return EXIT_FAILURE;
    }
    struct fiemap *fiemap;
    if (!(fiemap = read_fiemap(fd_sparse))) {
        fprintf(stderr, "Error: Unable to read fiemap %s\n", image_file);
        close(fd_block);
        close(fd_sparse);
        return EXIT_FAILURE;
    }
    printf("File %s copy %d extents:\n", image_file, fiemap->fm_mapped_extents);
    printf("#\tOffset          Length           Status\n");
    off_t result = -1;
    for (unsigned i = 0; i < fiemap->fm_mapped_extents; i++) {
        result = copy_extent(fd_block, fd_sparse, fiemap->fm_extents[i].fe_logical, fiemap->fm_extents[i].fe_length);
        printf("%d:\t%-16.16llx %-16.16llx %s\n",
               i,
               fiemap->fm_extents[i].fe_logical,
               fiemap->fm_extents[i].fe_length,
               result ? "FAIL" : "OK");
        if (result) {
            if (errno)
                perror("System error (Write copy_extent):");
            break;
        }
    }
    free(fiemap);
    // Sync block filesystem
    syncfs(fd_block);
    // Re-read partition table on the device
    if (ioctl(fd_block, BLKRRPART, NULL)) {
        fprintf(stderr, "Warning: Unable to re-read kernel partition table\n");
    }
    close(fd_block);
    close(fd_sparse);
    return result ? EXIT_FAILURE : EXIT_SUCCESS;
}

int main(int argc, char **argv)
{
    const char *img_file, *blk_dev;
    if (argc == 3) {
        img_file = argv[1];
        blk_dev  = argv[2];
    }
    else {
        syntax(argv);
        return EXIT_FAILURE;
    }
    if (write_image(img_file, blk_dev)) {
        return EXIT_FAILURE;
    }
    int result = verify_image(img_file, blk_dev);
    fprintf(stderr, "Write image %s to %s %s\n", img_file, blk_dev, result ? "FAILED" : "SUCCESS");
    return result;
}